Predictive models for the impact of nanomaterials on biological systems remain elusive. Although there is agreement that physicochemical properties (particle diameter, shape, surface chemistry, and core material) influence toxicity, there are limited and often contradictory, data relating structure to toxicity, even for core diameter. Given the importance of size in determining nanoscale properties, we aimed to address this data gap by examining the biological effects of a defined series of gold nanoparticles (AuNPs) on zebrafish embryos. Five AuNPs samples with narrowly spaced core diameters (0.8-5.8 nm) were synthesized and functionalized with positively charged -trimethylammonium ethanethiol (TMAT) ligands. We assessed the bioactivity of these NPs in a high-throughput developmental zebrafish assay at eight concentrations (0.5-50 µg/mL) and observed core diameter-dependent bioactivity. The smaller diameter AuNPs were the most toxic when expressing exposures based on an equal mass. However, when expressing exposures based on total surface area, toxicity was independent of the core diameter. When holding the number of nanoparticles per volume constant (at 6.71 × 10/mL) in the exposure medium across AuNPs diameters, only the 5.8 nm AuNPs exhibited toxic effects. Under these exposure conditions, the uptake of AuNPs in zebrafish was only weakly associated with core diameter, suggesting that differential uptake of TMAT-AuNPs was not responsible for toxicity associated with the 5.8 nm core diameter. Our results indicate that larger NPs may be the most toxic on a per particle basis and highlight the importance of using particle number and surface area, in addition to mass, when evaluating the size-dependent bioactivity of NPs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7211402 | PMC |
http://dx.doi.org/10.1080/17435390.2019.1592259 | DOI Listing |
Carbohydr Polym
March 2025
Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China. Electronic address:
In an effort to mitigate or reverse the pathological progression of early-stage osteonecrosis of the femoral head (ONFH), this study employed a promising strategy that involves the sustained delivery of osteogenic factors to augment core decompression, facilitated by the use of composite hydrogels. Specifically, a hydrogel was synthesized by blending chitosan, Pluronic F-127, and tripolyphosphate, utilizing both ionic bonding and copolymer micelle cross-linking techniques. This hydrogel demonstrated exceptional biocompatibility, temperature responsiveness, pH-dependent biodegradation, and controlled release properties.
View Article and Find Full Text PDFNanotoxicology
January 2025
Department of Pharmaceutical Sciences & Administration, School of Pharmacy, Westbrook College of Health Professions, University of New England, Portland, Maine, USA.
Important cell-based models of intestinal inflammation have been advanced in hopes of predicting the impact of nanoparticles on disease. We sought to determine whether a high level and extended exposure of nanoplastic might result in the added intestinal inflammation caused by nanoplastic reported in a mouse model of irritable bowel disease. The cell models consist of a Transwell©-type insert with a filter membrane upon which lies a biculture monolayer of Caco-2 and HT29-MTX-E12 made up the barrier cells (apical compartment).
View Article and Find Full Text PDFACS Sens
January 2025
Department of Emergency, Shanghai Changhai Hospital, Shanghai 200433, China.
Heatstroke, a global concern exacerbated by climate change, poses significant health risks, potentially leading to multiorgan damage and fatalities. Core body temperature (CBT) is a critical and precise indicator of heatstroke, and its continuous monitoring could serve as a pivotal tool for early detection. Traditional CBT measurements, often invasive (e.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of BioMechanical Engineering, Bio-Inspired Technology Group, Faculty of Mechanical Engineering, Delft University of Technology, Delft, Netherlands.
Percutaneous pancreatic core biopsy is conclusive but challenging due to large-diameter needles, while smaller-diameter needles used in aspiration methods suffer from buckling and clogging. Inspired by the ovipositor of parasitic wasps, which resists buckling through self-propulsion and prevents clogging via friction-based transport, research has led to the integration of these functionalities into multi-segment needle designs or tissue transport system designs. This study aimed to combine these wasp-inspired functionalities into a single biopsy needle by changing the interconnection of the needle segments.
View Article and Find Full Text PDFVet Radiol Ultrasound
January 2025
Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, Missouri, USA.
Strontium-90 plesiotherapy delivers high doses of radiation to superficial lesions (<3 mm depth) with excellent sparing of deeper tissues. The sealed-source applicator tip is circular and 8-10 mm in diameter. Larger treatment fields are treated with multiple overlapping fields.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!