Silver nanoparticles (AgNP) are one of the most studied nanoparticles due to their anti-bacterial, -fungal, -viral, -parasitic, and -inflammatory properties. This raises the need to evaluate the toxicity and biological effects of AgNP in the immune system in order to develop new safer biomedical products. In this study, an AgNP formulation currently approved for veterinary applications was applied to mouse bone marrow-derived dendritic cells (BMDC), considered important antigen-presenting cells of the immune system, to evaluate cytotoxicity, genotoxicity, and any significant influence on expression of cellular markers associated with BMDC phenotype and maturation status. The results showed that after 12 h of AgNP exposure, a significant decrease in BMDC viability occurred at the highest concentration tested (1.0 µg AgNP/ml) and at lower doses, the cells maintained membrane integrity and metabolic activity. DNA damage was not significant with any AgNP level aside from the 1.0 µg AgNP/ml level. Regarding phenotype, no differences in expression of CD40 (co-stimulatory molecule highly present in mature BMDC) or in CD273 (a marker for inhibitory T-cell response) were observed. The current results showed that the toxicity of this AgNP formulation was dose-related. The findings also suggest BMDC could maintain structural conservation of co-stimulatory/co-inhibitory surface molecules after 12 h of exposure to this AgNP. This work represents the first step in identifying the toxic effects of this AgNP formulation on dendritic cells.

Download full-text PDF

Source
http://dx.doi.org/10.1080/1547691X.2019.1584652DOI Listing

Publication Analysis

Top Keywords

dendritic cells
12
agnp formulation
12
silver nanoparticles
8
mouse bone
8
bone marrow-derived
8
marrow-derived dendritic
8
agnp
8
effects agnp
8
immune system
8
10 µg agnp/ml
8

Similar Publications

Glutathione-Responsive Metal-Organic-Framework-Derived MnO/(A/R)TiO Nanoparticles for Enhanced Synergistic Sonodynamic/Chemodynamic/Immunotherapy.

ACS Nano

January 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.

Despite the potential of sonodynamic therapy (SDT) in treating malignant tumors, the lack of effective sonosensitizers has limited its clinical implementation. In this study, we explored the relationship between the heteroatom doping concentration in metal-organic frameworks and interface formation after pyrolysis by regulating the addition of manganese sources and successfully derived Z-scheme heterojunctions MnO/(A/R)TiO (MTO) in situ from MIL-125-NH (Ti/Mn). The electron transfer pathway introduced by interfacial contact promoted carrier separation and greatly preserved the effective redox components, significantly influencing the performance of reactive oxygen species generation.

View Article and Find Full Text PDF

Tumor-draining lymph node dendritic cells (DCs) are poor stimulators of tumor antigen-specific CD4 T cells; however, the mechanism behind this defect is unclear. We now show that, in tumor-draining lymph node DCs, a large proportion of major histocompatibility complex class II (MHC-II) molecules retains the class II-associated invariant chain peptide (CLIP) fragment of the invariant chain bound to the MHC-II peptide binding groove due to reduced expression of the peptide editor H2-M and enhanced activity of the CLIP-generating proteinase cathepsin S. The net effect of this is that MHC-II molecules are unable to efficiently bind antigenic peptides.

View Article and Find Full Text PDF

Efficacy and safety of PD-1 blockade-activated neoantigen specific cellular therapy for advanced relapsed non-small cell lung cancer.

Cancer Immunol Immunother

January 2025

Department of Oncology, Lianyungang Clinical College of Nanjing Medical University/The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, 222002, China.

Background: Due to its strong immunogenicity and tumor specificity, neoplastic antigen has emerged as an immunotherapy target with wide therapeutic prospect and clinical application value. Anti-programmed death-1 (PD-1) antibodies reinvigorate T cell-mediated antitumor immunity. So, we conducted single-arm trial to assess the safety and efficacy of PD-1 blockade(Camrelizumab)-activated neoantigen specific cellular therapy (aNASCT) on advanced relapsed non-small lung cancer(NSCLC)(ClinicalTrials.

View Article and Find Full Text PDF

Targeting immune checkpoints on myeloid cells: current status and future directions.

Cancer Immunol Immunother

January 2025

Department of General Surgery, Shengjing Hospital of China Medical University, ShenyangLiaoning Province, 110004, China.

Myeloid cells accumulate extensively in most tumors and play a critical role in immunosuppression of the tumor microenvironment (TME). Like T cells, myeloid cells also express immune checkpoint molecules, which induce the immunosuppressive phenotype of these cells. In this review, we summarize the tumor-promoting function and immune checkpoint expression of four types of myeloid cells: macrophages, neutrophils, dendritic cells, and myeloid-derived suppressor cells, which are the main components of the TME.

View Article and Find Full Text PDF

CircRNA-loaded DC vaccine in combination with low-dose gemcitabine induced potent anti-tumor immunity in pancreatic cancer model.

Cancer Immunol Immunother

January 2025

National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China.

Although promising, dendritic cell (DC) vaccines may not suffice to fully inhibit tumor progression alone, mainly due to the short expression time of the antigen in DC vaccines, immunosuppressive tumor microenvironment, and tumor antigenic modulation. Overcoming the limitations of DC vaccines is expected to further enhance their anti-tumor effects. In this study, we constructed a circRNA-loaded DC vaccine utilizing the inherent stability of circular RNA to enhance the expression level and duration of the antigen within the DC vaccine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!