To date, TiO films prepared by atomic layer deposition are widely used to prepare CuO nanowire (NW)-based photocathodes with photoelectrochemical (PEC) durability as this approach enables conformal coating and furnishes chemical robustness. However, this common approach requires complicated interlayers and makes the fabrication of photocathodes with reproducible performance and long-term stability difficult. Although sol-gel-based approaches have been well established for coating surfaces with oxide thin films, these techniques have rarely been studied for oxide passivation in PEC applications, because the sol-gel coating methods are strongly influenced by surface chemical bonding and have been mainly demonstrated on flat substrates. As a unique strategy based on solution processing, herein, we suggest a creative solution for two problems encountered in the conformal coating of surfaces with oxide layers: (i) how to effectively prevent corrosion of materials with hydrophilic surfaces by simply using a single TiO surface protection layer instead of a complex multilayer structure and (ii) guaranteeing perfect chemical durability. A Cu(OH) NW can be easily prepared as an intermediate phase by anodization of a Cu metal, where the former inherently possesses a hydrophilic hydroxylated surface and thus, enables thorough coating with TiO precursor solutions. Chemically robust nanowires are then generated as the final product via the phase transformation of Cu(OH) to CuO via sintering at 600 °C. The coated NWs exhibit excellent PEC properties and a stable performance. Consequently, the perfect chemical isolation of the CuO NWs from the electrolyte allows a remarkable PEC operation with the maintenance of the initial photocurrent for more than one day.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b02727DOI Listing

Publication Analysis

Top Keywords

oxide passivation
8
coating tio
8
conformal coating
8
coating surfaces
8
surfaces oxide
8
perfect chemical
8
coating
6
oxide
5
robust photoelectrochemical
4
photoelectrochemical operation
4

Similar Publications

Enhanced degradation of sulfamethoxazole in water by biochar loading and multiple free and non-free radicals cooperating in the FeS@BC/PS system.

J Environ Manage

January 2025

Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China. Electronic address:

The excessive consumption of sulfamethoxazole (SMX), a pharmaceutical antibiotic, poses significant environmental hazards. The FeS-persulfate (FeS-PS) system has been employed for SMX remediation because of its excellent performance. However, FeS tends to agglomerate and become passivated, negatively impacting its activation performance.

View Article and Find Full Text PDF

Interface Engineering and Modulation of Nickel Oxide for High Air-Stable p-Type Crystalline Silicon Solar Cells.

Small

January 2025

Anhui Soltrend New Energy Technology Co., Ltd, Lujiang County, Hefei, 230000, China.

Dopant-free passivating contact crystalline silicon solar cells hold the potential of higher efficiency and cost down. In the hole-transport terminal, one still faces the challenge of trade-off between efficiency and stability. In this work, a H-AlO/NiO/Ni stacked hole-transport layer is proposed, where the H-AlO standing for H-rich AlO film can effectively reduce the interfacial defects and the high work function Ni metal results in a low contact resistance of 47.

View Article and Find Full Text PDF

In this paper, Gd-doped ZrO gate dielectric films and metal-oxide-semiconductor (MOS) capacitors structured as Al/ZrGdO /Si were prepared using an ultraviolet ozone (UVO)-assisted sol-gel method. The effects of heat treatment temperature on the microstructure, chemical bonding state, optical properties, surface morphology and electrical characteristics of the ZrGdO composite films and MOS capacitors were systematically investigated. The crystalline phase of the ZrGdO films appeared only at 600 °C, indicating that Gd doping effectively inhibits the crystallization of ZrO films.

View Article and Find Full Text PDF

This study examined the electrodissolution mechanism of five impure sphalerite samples, which differ significantly in purity levels, along with their partially oxidized counterparts in a 0.5 M HSO. Partially oxidized samples were prepared through an incomplete leaching of sphalerite using HSO with Fe(SO).

View Article and Find Full Text PDF

The current piston material, Al-12Si, lacks sufficient passivation in the acidic lubrication system of biodiesel engines, making it prone to corrosion in the presence of Cl. Fe amorphous particles exhibit good compatibility with Al-12Si, possessing strong corrosion resistance, excellent passivation ability, and good high-temperature stability. They are a potential reinforcement for enhancing the Al-12Si piston material.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!