A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

WordSeg: Standardizing unsupervised word form segmentation from text. | LitMetric

A basic task in first language acquisition likely involves discovering the boundaries between words or morphemes in input where these basic units are not overtly segmented. A number of unsupervised learning algorithms have been proposed in the last 20 years for these purposes, some of which have been implemented computationally, but whose results remain difficult to compare across papers. We created a tool that is open source, enables reproducible results, and encourages cumulative science in this domain. WordSeg has a modular architecture: It combines a set of corpora description routines, multiple algorithms varying in complexity and cognitive assumptions (including several that were not publicly available, or insufficiently documented), and a rich evaluation package. In the paper, we illustrate the use of this package by analyzing a corpus of child-directed speech in various ways, which further allows us to make recommendations for experimental design of follow-up work. Supplementary materials allow readers to reproduce every result in this paper, and detailed online instructions further enable them to go beyond what we have done. Moreover, the system can be installed within container software that ensures a stable and reliable environment. Finally, by virtue of its modular architecture and transparency, WordSeg can work as an open-source platform, to which other researchers can add their own segmentation algorithms.

Download full-text PDF

Source
http://dx.doi.org/10.3758/s13428-019-01223-3DOI Listing

Publication Analysis

Top Keywords

modular architecture
8
wordseg standardizing
4
standardizing unsupervised
4
unsupervised word
4
word form
4
form segmentation
4
segmentation text
4
text basic
4
basic task
4
task language
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!