The trace metal pollution in the environment is a highly concerned issue in these days. One of the important causes of trace metal pollution is the exhaust gases released from the vehicles on the roads. These dangerous gases pose life-threatening effects on the forage plants grown along the roadside as these plants are at direct risk to these trace metals. The aims of the present study were to determine the cobalt (Co) concentrations in soil, forages, and blood plasma of the buffaloes and to evaluate the Co deficiencies and toxicities in these samples. All samples were collected from six sites (Faisalabad roadside, Bhalwal roadside, Shaheenabad roadside, Mateela roadside, 50 Chak roadside, and Dera Saudi-control) of Sargodha city. The Co concentrations in these samples were determined by atomic absorption spectrophotometer (AA-6300 Shimadzu Japan). In soil samples, Co level ranged from 1.958 to 3.457 mg/kg in the six sampling sites. The highest Co level was observed at site 6 and the lowest at site 2. In forage samples, Co level ranged from 0.770 to 2.309 mg/kg in the six sampling sites. The highest Co level was observed at site 3 and the lowest at site 2. In blood plasma samples, Co level ranged from 2.644 to 4.927 mg/kg in the six sampling sites. The highest Co level was observed at site 1 and the lowest at site 3. The results showed higher Co values in the samples collected from the site IV while the bioconcentration factor for forage-soil was found highest in the samples collected from Site III. On the other hand, a correlation was found positively significant when soil and forage were correlated, and it was found negatively significant when blood and forage were correlated.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-019-04959-9DOI Listing

Publication Analysis

Top Keywords

trace metal
12
metal pollution
12
samples collected
12
samples level
12
level ranged
12
sampling sites
12
sites highest
12
highest level
12
level observed
12
observed site
12

Similar Publications

Male infertility is a common complication of diabetes. Diabetes leads to the decrease of zinc (Zn) content, which is a necessary trace element to maintain the normal structure and function of reproductive organs and spermatogenesis. The purpose of this study was to investigate the effect of metformin combined with zinc on testis and sperm in diabetic mice.

View Article and Find Full Text PDF

The superposition of heavy metals (HMs) from multiple anthropogenic sources in geochemical anomaly areas makes it difficult to discriminate prime sources in atmospheric HMs. This study utilized a combination of microscopic features, positive matrix factorisation, and Pb isotope fingerprints to trace the main sources of HMs bound to total suspended particulates (TSP) at a pollution site (Msoshui: MS) and control site (Lushan: LS) in northwestern Guizhou. The results reveal that the concentrations of Cd, Pb, Cr, As, Cu, Ni, and Zn in the TSP of LS are 3.

View Article and Find Full Text PDF

In the context of evaluating the environmental impact of deep-sea tailing practices, we conducted a case study on the Bayer effluent released into the Mediterranean Sea by the French Gardanne alumina plant. This effluent results from the filtration of red mud, which has previously been discharged into the Cassidaigne canyon for 55 years. In 2015, regulatory changes permitted the released of a filtered effluent instead of the slurry.

View Article and Find Full Text PDF

The maritime transport sector poses significant air quality concerns, particularly in nearby cities. Ultrafine particles (UFP, diameter < 100 nm) are of particular concern due to their potential health impacts. This study measured particle number concentrations (PNC), size distributions (PNSD), and other pollutants including particulate matter (PM), nitrogen oxides (NO), black carbon (BC), sulfur dioxide (SO) and ozone (O), organic markers and trace elements at a major European harbor and an urban background (UB) location.

View Article and Find Full Text PDF

The average annual water availability worldwide is approximately 1,386 trillion cubic hectometers (hm), of which 97.5% is saltwater and only 2.5% is freshwater.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!