The effect of methanol, ethanol, acetone, N,N-dimethylformamide (DMF), dimethyl sulfoxide and Nujol on the growth of Escherichia coli DH5α, Bacillus subtilis and Saccharomyces cerevisiae D273 was investigated. All of the tested cultures appeared susceptible to the organic media they were treated with, which evinced in apparent hindering of cell development. The observed diverse solvent tolerance, except from their different biochemical activity, may also be related to the changes in cell membrane fluidity induced by the solvent species. Parallel electron paramagnetic resonance investigations using egg yolk lecithin model liposomes revealed that the fluidity of the phospholipid system in cell membranes may either be considerably decreased (Nujol, DMF, ethanol) or increased (acetone), thus rendering difficult the intracellular nutrient supply. Hence, even the chemically neutral Nujol produced a distinct cell-growth inhibitory effect. These results are fairly consistent with the outcome of the survival tests, particularly for the bacteria strains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11033-019-04782-y | DOI Listing |
Nanotechnology
January 2025
Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, 140306, INDIA.
This study investigates simple acetylenes substituted with phenylurea as a constant H-bonding unit (Alk-R) and varied hydrophobic units (R = H, Phenyl (Ph), Phenylacetylene (PA), Ph-NMe2) to understand self-assembly properties driven by synergistic non-covalent interactions. Our observations reveal hierarchical self-assembled fibrillar networks with luminescent needles, fibers, and flowers on nano- to micro-meter scales. Subtle changes in substituents led to significant differences: H, Ph, PA, and Ph-NMe2 produced needle-like crystals, dendritic nanofibers, microflakes, and no self-assembly, respectively.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Energy and Environment, Southeast University, Nanjing 210096, China.
The broad temperature adaptability associated with the desolvation process remains a formidable challenge for organic electrolytes in rechargeable metal batteries, especially under low-temperature (LT) conditions. Although a traditional approach involves utilizing electrolytes with a high degree of anion participation in the solvation structure, known as weakly solvation electrolytes (WSEs), the solvation structure of these electrolytes is highly susceptible to temperature fluctuations, potentially undermining their LT performance. To address this limitation, we have devised an innovative electrolyte that harnesses the interplay between solvent molecules, effectively blending strong and weak solvents while incorporating anion participation in a solvation structure that remains mostly unchanged by temperature variations.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Center for Engineering Concepts Development, Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States.
In 2020, nearly 3 million scientific and engineering papers were published worldwide (White, K. Publications Output: U.S.
View Article and Find Full Text PDFNanomicro Lett
January 2025
CAS Key Laboratory of Organic Solids, Institute of Chemistry, Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
Finding ways to produce dense and smooth perovskite films with negligible defects is vital for achieving high-efficiency perovskite solar cells (PSCs). Herein, we aim to enhance the quality of the perovskite films through the utilization of a multifunctional additive in the perovskite anti-solvent, a strategy referred to as anti-solvent additive engineering. Specifically, we introduce ortho-substituted-4'-(4,4″-di-tert-butyl-1,1':3',1″-terphenyl)-graphdiyne (o-TB-GDY) as an AAE additive, characterized by its sp/sp-cohybridized and highly π-conjugated structure, into the anti-solvent.
View Article and Find Full Text PDFNanomicro Lett
January 2025
Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, People's Republic of China.
Practical Zn metal batteries have been hindered by several challenges, including Zn dendrite growth, undesirable side reactions, and unstable electrode/electrolyte interface. These issues are particularly more serious in low-concentration electrolytes. Herein, we design a Zn salt-mediated electrolyte with in situ ring-opening polymerization of the small molecule organic solvent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!