Chronic stress produces enduring sex- and region-specific alterations in novel stress-induced c-Fos expression.

Neurobiol Stress

Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA.

Published: February 2019

Prolonged or repeated exposure to stress increases risk for a variety of psychological disorders, many of which are marked by dysfunction of corticolimbic brain regions. Notably, women are more likely than men to be diagnosed with these disorders, especially when onset of symptoms follows stressful life events. Using rodent models, investigators have recently begun to elucidate sex-specific changes in the brain and behavior that occur immediately following chronic stress. However, little is known regarding the lasting sequelae of chronic stress, as well as how potential changes may impact responsivity to future stressors. We recently demonstrated that male and female rats show different patterns of dendritic reorganization in medial prefrontal cortex in the days following chronic stress. Here, we examined the immediate and lasting effects of chronic restraint stress (CRS; 3 h/day, 10 days) on neuronal activation, across several corticolimbic brain regions, induced by novel acute stress exposure. Chronically stressed male and female rats were exposed to acute elevated platform stress (EPS) either 1 (CRS-EPS) or 7 (CRS-Rest-EPS) days after CRS. Compared to rats exposed to EPS only, significant reductions in acute stress-induced c-Fos expression were observed in the medial prefrontal cortex, hippocampus, and paraventricular nucleus of the hypothalamus (PVN) in CRS-EPS male rats, some of which persisted to 7 days post-stress. In contrast, we found little modulation of novel stress-induced c-Fos expression in CRS-EPS female rats. However, CRS-Rest-EPS female rats exhibited a significant enhancement of acute stress-induced neuronal activity in the PVN. Together, these data show that prior chronic stress produces sex- and region-specific alterations in novel stress-induced neuronal activation, which are dependent on the presence or absence of a rest period following chronic stress. These findings suggest that the post-stress rest period may give rise to sex-specific neuroadaptations to stress, which may underlie sex differences in stress susceptibility versus resilience.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6430515PMC
http://dx.doi.org/10.1016/j.ynstr.2019.100147DOI Listing

Publication Analysis

Top Keywords

chronic stress
24
female rats
16
novel stress-induced
12
stress-induced c-fos
12
c-fos expression
12
stress
11
stress produces
8
sex- region-specific
8
region-specific alterations
8
alterations novel
8

Similar Publications

The dysfunction of stress granules (SGs) plays a crucial role in the pathogenesis of various neurological disorders, with T cell intracellular antigen 1 (TIA1) being a key component of SGs. However, the role and mechanism of TIA1-mediated SGs in experimental autoimmune encephalomyelitis (EAE) remain unclear. In this study, upregulation of TIA1, its translocation from the nucleus to the cytoplasm, and co-localization with G3BP1 (a marker of SGs) are observed in the spinal cord neurons of EAE mice.

View Article and Find Full Text PDF

Impaired wound healing affects the life quality of patients and causes a substantial financial burden. Hydrogen-rich medium is reported to have antioxidant and anti-inflammatory effects. However, the role of hydrogen-rich saline (HRS) in cutaneous wound healing remains largely unexplored, especially by metabolomics.

View Article and Find Full Text PDF

To explore the effects of guided imagery with progressive deep muscle relaxation (PDMR) and meditation programs on chronic stress perception and health related quality of life in college students. College students were recruited from a local private university in Northeast Pennsylvania. Participants were not concurrently enrolled in another weekly meditation class.

View Article and Find Full Text PDF

Purpose Of Review: Using advanced bibliometric analysis, we systematically mapped the most current literature on urban air pollution and neurodevelopmental conditions to identify key patterns and associations. Here, we review the findings from the broader literature by discussing a distilled, validated subset of 44 representative studies.

Recent Findings: Literature highlights a complex relationship between environmental toxins, neurodevelopmental disorders in children, and neurobehavioral pathways involving oxidative stress, neuroinflammation, and protein aggregation.

View Article and Find Full Text PDF

Plasma metabolome reveals altered oxidative stress, inflammation, and amino acid metabolism in dogs with idiopathic epilepsy.

Epilepsia

January 2025

Equine and Companion Animal Nutrition, Department of Morphology, Imaging, Orthopedics, Rehabilitation, and Nutrition, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium.

Objective: Idiopathic epilepsy (IE) is the most common chronic neurological disease in dogs and an established natural animal model for human epilepsy types with genetic and unknown etiology. However, the metabolic pathways underlying IE remain largely unknown.

Methods: Plasma samples of healthy dogs (n = 39) and dogs with IE (n = 49) were metabolically profiled (n = 121 known target metabolites) and fingerprinted (n = 1825 untargeted features) using liquid chromatography coupled to mass spectrometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!