In high-elevation grasslands, plants can encounter periods with high air temperature while the soil remains cold, which may lead to a temporary mismatch in the physiological activity of leaves and roots. In a climate chamber experiment with graminoid species from three elevations (4400, 2400, and 250 m a.s.l.), we tested the hypothesis that soil temperature can influence photosynthesis and stomatal conductance independently of air temperature. Soil monoliths with swards of (high alpine), (lower alpine), and (upper lowland) were exposed to soil temperatures of 25, 15, 5, and -2°C and air temperatures of 20 and 10°C for examining the effect of independent soil and air temperature variation on photosynthesis, leaf dark respiration, and stomatal conductance and transpiration. Soil frost (-2°C) had a strong negative effect on gas exchange and stomatal conductance in all three species, independent of the elevation of origin. Leaf dark respiration was stimulated by soil frost in , but not in , which also had a lower temperature optimum of photosynthesis. Soil cooling from 15 to 5°C did not significantly reduce stomatal conductance and gas exchange in any of the species. We conclude that all three graminoids are able to maintain a relatively high root water uptake in cold, non-frozen soil, but the high-alpine seems to be especially well adapted to warm shoot - cold root episodes, as it has a higher photosynthetic activity at 10 than 20°C air temperature and does not up-regulate leaf dark respiration upon soil freezing, as was observed in the grasses from warmer climates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6431667 | PMC |
http://dx.doi.org/10.3389/fpls.2019.00330 | DOI Listing |
Sci Total Environ
January 2025
Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise Street. 46, 51003 Tartu, Estonia. Electronic address:
Despite only covering ~3 % of the land mass, peatlands store more carbon (C) per unit area than any other ecosystem. This is due to the discrepancy between C fixed by the plants (Gross primary productivity (GPP)) and decomposition. However, this C is vulnerable to frequent, severe droughts and changes in the peatland microclimate.
View Article and Find Full Text PDFPhotosynth Res
January 2025
Horticulture Department of Agriculture Faculty, Selcuk University, Konya, Turkey.
Seed priming and plant growth-promoting bacteria (PGPB) may alleviate salt stress effects. We exposed a salt-sensitive variety of melon to salinity following seed priming with NaCl and inoculation with Bacillus. Given the sensitivity of photosystem II (PSII) to salt stress, we utilized dark- and light-adapted chlorophyll fluorescence alongside analysis of leaf stomatal conductance of water vapour (G).
View Article and Find Full Text PDFTree Physiol
January 2025
Tropical Plant and Soil Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Mānoa, 3190 Maile Way, Honolulu, Hawai'i, USA.
Breadfruit (Artocarpus altilis) is a prolific tropical tree producing highly nutritious and voluminous carbohydrate-rich fruits. Already recognized as an underutilized crop, breadfruit could ameliorate food insecurity and protect against climate-related productivity shocks in undernourished equatorial regions. However, a lack of fundamental knowledge impedes widespread agricultural adoption, from modern agroforestry to plantation schemes.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biotechnology, University of Verona, Verona, Italy.
Lower atmospheric pressure affects biologically relevant physical parameters such as gas partial pressure and concentration, leading to increased water vapor diffusivity and greater soil water content loss through evapotranspiration. This might impact plant photosynthetic activity, resource allocation, water relations, and growth. However, the direct impact of low air pressure on plant physiology is largely unknown.
View Article and Find Full Text PDFPhotosynthetica
January 2025
Plant Physiology Sector, State University of Norte Fluminense, Center for Sciences and Agricultural Technologies (CCTA), Avenida Alberto Lamego, 2000, 28015-620, Campos dos Goytacazes, RJ, Brazil.
The aim was to investigate the morphological, photosynthetic, and hydraulic physiological characteristics of different genotypes of under controlled cultivation conditions. Growth, conductance, and hydraulic conductivity of the root system of 16 genotypes were evaluated in Experiment 1 (November 2013). In Experiment 2 (December 2014), in addition to the previous characteristics, gas exchange, photochemical efficiency, leaf water potential, and leaf hydraulic conductivity were investigated in five genotypes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!