It has recently been shown that individuals with selective IgA deficiency (sIgAD) have defective B cell responses both to T cell dependent and independent mimicking stimulations. The complex intracellular signaling pathways from different stimuli leading to IgA isotype switching have not been fully elucidated. Thus, the main objective of this study was to delineate these pathways and their potential role in the immunopathology linked to sIgAD. PBMCs from 10 individuals with sIgAD and 10 healthy controls (HC) were activated via either a T cell dependent or independent mimicking stimulation. Intracellular phosphorylation of pSTAT3, pSTAT5, pSTAT6, and as pERK1/2 was evaluated in T and B cells using phosphoflow cytometry. By evaluating T cell dependent cytokine driven pathways linked to IgA isotype induction we identified a defect involving an IL-21 driven STAT3 activation isolated to B cells in sIgAD individuals. However, all other signaling pathways studied were found to be normal compared to HC. In T cell dependent cytokine driven stimulations linked to IgA isotype induction the following patterns emerged: (i) IL-10 led to significant STAT3 activation in both T- and B cells; (ii) IL-4 stimulation was predominantly confined to STAT6 activation in both T- and B cells, with some effects on STAT3 activation in T-cells; (iii) as expected, of tested stimuli, IL-2 alone activated STAT5 and some STAT3 activation though in both cases only in T-cells; (iv) IL-21 induced significant activation of STAT3 in both T- and B cells, with some effects on STAT5 activation in T-cells; and finally (v) synergistic effects were noted of IL-4+IL-10 on STAT5 activation in T-cells, and possibly STAT6 in both T- and B cells. On the other hand, CPG induced T cell independent activation was confined to ERK1/2 activation in B cells. Our results indicate a diminished STAT3 phosphorylation following IL-21 stimulation solely in B cells from sIgAD individuals. This can represent aberrant germinal center reactions or developmental halt. Thus, our work provides further insight into the unraveling of the previously hypothesized role of IL-21 to reconstitute immunoglobulin production in primary antibody deficiencies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6431630PMC
http://dx.doi.org/10.3389/fimmu.2019.00403DOI Listing

Publication Analysis

Top Keywords

cell dependent
16
stat3 activation
16
signaling pathways
12
iga isotype
12
activation cells
12
activation t-cells
12
activation
11
pathways linked
8
linked sigad
8
il-21 driven
8

Similar Publications

Deciphering the impact of NOS-derived NO on nitrogen metabolism and carbon flux in the heterocytous cyanobacterium Aphanizomenon flos-aquae 2012/KM1/D3.

Plant Physiol Biochem

January 2025

Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India. Electronic address:

Nitric oxide synthases (NOSs) are heme-based monooxygenases that catalyze the NADPH-dependent oxidation of L-arginine to produce NO and L-citrulline. Over the past five years, the identification and characterization of NOS homologs in cyanobacteria have significantly advanced our understanding of these enzymes. However, the precise mechanisms through which NOS-derived NO influences nitrogen metabolism remain incompletely elucidated.

View Article and Find Full Text PDF

One hundred thirty-four germ line PU.1 variants and the agammaglobulinemic patients carrying them.

Blood

January 2025

Division of Immunology and Allergy, Children's Hospital of Philadelphia; Department of Pediatrics, Perelman School of Medicine; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States.

Leukopoiesis is lethally arrested in mice lacking the master transcriptional regulator PU.1. Depending on the animal model, subtotal PU.

View Article and Find Full Text PDF

The ASPARAGINE-RICH PROTEIN-LYST-INTERACTING PROTEIN5 complex regulates non-canonical AUTOPHAGY8 degradation in Arabidopsis.

Plant Physiol

January 2025

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300071, China.

The endocytic and autophagic pathways play important roles in abiotic stress responses and maintaining cellular homeostasis in plants. Asparagine Rich Proteins (NRPs) are plant-specific stress-responsive proteins that are involved in many abiotic stress-related signaling pathways. We previously demonstrated that NRP promotes PIN FORMED 2 (PIN2) vacuolar degradation to maintain PIN2 homeostasis under abscisic acid (ABA) treatment in Arabidopsis (Arabidopsis thaliana).

View Article and Find Full Text PDF

Background: Machupo virus (MACV) is a New World mammarenavirus (hereafter referred to as "arenavirus") and the etiologic agent of Bolivian hemorrhagic fever (BHF). No vaccine or antiviral therapy exists for BHF, which causes up to 35% mortality in humans. New World arenaviruses evolve separately in different locations.

View Article and Find Full Text PDF

Diabetic foot, leg ulcers and decubitus ulcers affect millions of individuals worldwide leading to poor quality of life, pain and in several cases to limb amputations. Despite the global dimension of this clinical problem, limited progress has been made in developing more efficacious wound dressings, the design of which currently focusses on wound protection and control of its exudate volume. The present in vitro study systematically analysed seven types of clinically-available wound dressings made of different biomaterial composition and engineering.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!