Background: Lung adenocarcinoma (LADC) with epidermal growth factor receptor (EGFR) mutation is considered a subgroup of lung cancer sensitive to EGFR-targeted tyrosine kinase inhibitors. We aimed to develop and validate a computed tomography (CT)-based radiomics signature for prediction of EGFR mutation status in LADC appearing as a subsolid nodule.

Materials And Methods: A total of 467 eligible patients were divided into training and validation cohorts ( = 306 and 161, respectively). Radiomics features were extracted from unenhanced CT images by using Pyradiomics. A CT-based radiomics signature for distinguishing EGFR mutation status was constructed using the random forest (RF) method in the training cohort and then tested in the validation cohort. A combination of the radiomics signature with a clinical factors model was also constructed using the RF method. The performance of the model was evaluated using the area under the curve (AUC) of a receiver operating characteristic curve.

Results: In this study, 64.2% (300/467) of the patients showed EGFR mutations. L858R mutation of exon 21 was the most common mutation type (185/301). We identified a CT-based radiomics signature that successfully discriminated between EGFR positive and EGFR negative in the training cohort (AUC = 0.831) and the validation cohort (AUC = 0.789). The radiomics signature combined with the clinical factors model was not superior to the simple radiomics signature in the two cohorts ( > .05).

Conclusion: As a noninvasive method, the CT-based radiomics signature can be used to predict the EGFR mutation status of LADC appearing as a subsolid nodule.

Implications For Practice: Lung adenocarcinoma (LADC) with epidermal growth factor receptor (EGFR) mutation is considered a subgroup of lung cancer that is sensitive to EGFR-targeted tyrosine kinase inhibitors. However, some patients with inoperable subsolid LADC are unable to undergo tissue sampling by biopsy for molecular analysis in clinical practice. A computed tomography-based radiomics signature may serve as a noninvasive biomarker to predict the EGFR mutation status of subsolid LADCs when mutational profiling is not available or possible.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6853103PMC
http://dx.doi.org/10.1634/theoncologist.2018-0706DOI Listing

Publication Analysis

Top Keywords

radiomics signature
36
egfr mutation
24
ct-based radiomics
16
mutation status
16
epidermal growth
12
growth factor
12
factor receptor
12
appearing subsolid
12
radiomics
10
signature
9

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!