Adoptive Immunotherapy with Antigen-Specific T Cells Expressing a Native TCR.

Cancer Immunol Res

Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, Texas.

Published: April 2019

Although T cells genetically modified with chimeric antigen receptors became the first immune effector product to obtain FDA approval, T-cell products that recognize their antigenic targets through their native receptors have also produced encouraging responses. For instance, T cells recognizing immunogenic viral antigens are effective when infused in immunosuppressed patients. A large number of tumor antigens are also expressed on nonviral tumors, but these antigens are less immunogenic. Many tumors can evade a transferred immune response by producing variants, which have lost the targeted antigens, or inhibitory molecules that recruit suppressive cells, impeding persistence and function of immune effectors. Nevertheless, infusion of antigen-specific T cells has been well-tolerated, and clinical responses have been consistently associated with immune activity against tumor antigens and epitope spreading. To overcome some of the obstacles mentioned above, current research is focused on defining culture conditions that promote persistence and activity of infused antigen-specific T cells. Combinations with immune checkpoint inhibitors or epigenetic modifiers to improve T-cell activity are also being evaluated in the clinic. Antigen-specific T cells may also be manufactured to overcome tumor evasion mechanisms by targeting multiple antigens and engineered to be resistant to inhibitory factors, such as TGFβ, or to produce the cytokines that are essential for T-cell expansion and sustained antitumor activity. Here, we discuss the use of T cells specific to tumor antigens through their native receptors and strategies under investigation to improve antitumor responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6462216PMC
http://dx.doi.org/10.1158/2326-6066.CIR-18-0888DOI Listing

Publication Analysis

Top Keywords

antigen-specific cells
16
tumor antigens
12
cells
8
native receptors
8
antigens
7
immune
5
adoptive immunotherapy
4
antigen-specific
4
immunotherapy antigen-specific
4
cells expressing
4

Similar Publications

Photosensitive Hybrid γδ-T Exosomes for Targeted Cancer Photoimmunotherapy.

ACS Nano

January 2025

Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.

Melanoma is the most aggressive type of skin cancers. Traditional chemotherapy and radiotherapy have limited effectiveness and can lead to systemic side effects. Photodynamic therapy (PDT) is a photoresponsive cancer therapy based on photosensitizers to generate reactive oxygen species (ROS) to eradicate tumor cells.

View Article and Find Full Text PDF

The domestic dog () is a competent host for () infection but no ante mortem diagnostic tests have been fully validated for this species. The aim of this study was to compare the performance of ante mortem diagnostic tests across samples collected from dogs considered to be at a high or low risk of sub-clinical infection. We previously tested a total of 164 dogs at a high risk of infection and here test 42 dogs at a low risk of infection and 77 presumed uninfected dogs with a combination of cell-based and/or serological diagnostic assays previously described for use in non-canid species.

View Article and Find Full Text PDF

Class IA PI3K p110δ and p110α subunits participate in TCR and costimulatory receptor signals involved in T cell-mediated immunity, but the role of p110α is not completely understood. Here, we analyzed a mouse model of the Cre-dependent functional inactivation of p110α (kinase dead) in T lymphocytes (p110αKD-T, KD). KD mice showed increased cellularity in thymus and spleen and altered T cell differentiation with increased number of CD4CD8 DP thymocytes, enhanced proportion of CD4 SP lymphocytes linked to altered apoptosis, lower Treg cells, and increased AKT and ERK phosphorylation in activated thymocytes.

View Article and Find Full Text PDF

Background/objectives: MDG1011 is an autologous TCR-T therapy developed as a treatment option for patients with myeloid malignancies, including acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), and multiple myeloma (MM). It is specific for the target antigen PReferentially expressed Antigen in MElanoma (PRAME). The recombinant TCR used in MDG1011 recognizes PRAME VLD-peptide presented by HLA-A*02:01-encoded surface molecules.

View Article and Find Full Text PDF

Since the precursor frequency of naive T cells is extremely low, investigating the early steps of antigen-specific T cell activation is challenging. To overcome this detection problem, adoptive transfer of a cohort of T cells purified from T cell receptor (TCR) transgenic donors has been extensively used but is not readily available for emerging pathogens. Constructing TCR transgenic mice from T cell hybridomas is a labor-intensive and sometimes erratic process, since the best clones are selected based on antigen-induced CD69 upregulation or IL-2 production in vitro, and TCR chains are polymerase chain reaction (PCR)-cloned into expression vectors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!