Background & Aims: Progressive familial intrahepatic cholestasis type 3 (PFIC3), for which there are limited therapeutic options, often leads to end-stage liver disease before adulthood due to impaired ABCB4-dependent phospholipid transport to bile. Using adeno-associated virus serotype 8 (AAV8)-mediated gene therapy, we aimed to restore the phospholipid content in bile to levels that prevent liver damage, thereby enabling stable hepatic ABCB4 expression and long-term correction of the phenotype in a murine model of PFIC3.

Methods: Ten-week-old Abcb4 mice received a single dose of AAV8-hABCB4 (n = 10) or AAV8-GFP (n = 7) under control of a liver specific promoter via tail vein injection. Animals were sacrificed either 10 or 26 weeks after vector administration to assess transgene persistence, after being challenged with a 0.1% cholate diet for 2 weeks. Periodic evaluation of plasma cholestatic markers was performed and bile duct cannulation enabled analysis of biliary phospholipids. Liver fibrosis and the Ki67 proliferation index were assessed by immunohistochemistry.

Results: Stable transgene expression was achieved in all animals that received AAV8-hABCB4 up to 26 weeks after administration. AAV8-hABCB4 expression restored biliary phospholipid excretion, increasing the phospholipid and cholesterol content in bile to levels that ameliorate liver damage. This resulted in normalization of the plasma cholestatic markers, alkaline phosphatase and bilirubin. In addition, AAV8-hABCB4 prevented progressive liver fibrosis and reduced hepatocyte proliferation for the duration of the study.

Conclusion: Liver-directed gene therapy provides stable hepatic ABCB4 expression and long-term correction of the phenotype in a murine model of PFIC3. Translational studies that verify the clinical feasibility of this approach are warranted.

Lay Summary: Progressive familial intrahepatic cholestasis type 3 (PFIC3) is a severe genetic liver disease that results from impaired transport of lipids to bile, which makes the bile toxic to liver cells. Because therapeutic options are currently limited, this study aims to evaluate gene therapy to correct the underlying genetic defect in a mouse model of this disease. By introducing a functional copy of the missing gene in liver cells of mice, we were able to restore lipid transport to bile and strongly reduce damage to the liver. The proliferation of liver cells was also reduced, which contributes to long-term correction of the phenotype. Further studies are required to evaluate whether this approach can be applied to patients with PFIC3.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhep.2019.03.021DOI Listing

Publication Analysis

Top Keywords

gene therapy
16
long-term correction
16
progressive familial
12
familial intrahepatic
12
intrahepatic cholestasis
12
cholestasis type
12
correction phenotype
12
liver cells
12
liver
11
liver-directed gene
8

Similar Publications

This review highlights recent progress in exosome-based drug delivery for cancer therapy, covering exosome biogenesis, cargo selection mechanisms, and their application across multiple cancer types. As small extracellular vesicles, exosomes exhibit high biocompatibility and low immunogenicity, making them ideal drug delivery vehicles capable of efficiently targeting cancer cells, minimizing off-target damage and side effects. This review aims to explore the potential of exosomes in cancer therapy, with a focus on applications in chemotherapy, gene therapy, and immunomodulation.

View Article and Find Full Text PDF

Signal integrator function of CXXC5 in Cancer.

Cell Commun Signal

January 2025

National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.

CXXC type zinc finger protein 5 (CXXC5) is a member of the ZF-CXXC family and plays a pivotal role in signal integration and information transfer within cell signaling network. CXXC5 acts as a regulator in various physiological processes, and abnormalities in its protein structure or function have been linked to multiple pathological processes. In this article, we correspondingly describe the composition of the ZF-CXXC family, emphatically introducing the features of the CXXC5 gene and protein, review the role of CXXC5 in cellular signaling networks, the physiological and pathological processes associated with CXXC5 dysregulation, and particularly focus on the correlation between CXXC5 and cancers.

View Article and Find Full Text PDF

A humanized anti-MSLN×4-1BB bispecific antibody exhibits potent antitumour activity through 4-1BB signaling activation and fc function without systemic toxicity.

J Transl Med

January 2025

Department of Medical Oncology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, 230031, Anhui, China.

Background: Agonistic monoclonal antibodies targeting 4-1BB/CD137 have shown preclinical promise, but their clinical development has been limited by severe liver toxicity or limited efficacy. Therefore, a safe and efficient immunostimulatory molecule is urgently needed for cancer immunotherapy.

Methods: A novel anti-MSLN×4-1BB bispecific antibody (bsAb) was generated via antibody engineering, and its affinity and activity were detected via enzyme-linked immunosorbent assay (ELISA), flow cytometry, and T-cell activation and luciferase reporter assays.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) is a prevalent malignancy worldwide, associated with significant morbidity and mortality. Cyclin-dependent kinase 1 (CDK1) plays a crucial role in cell cycle regulation and has been implicated in various cancers. This study aimed to evaluate the prognostic value of CDK1 in CRC and to identify traditional Chinese medicines (TCM) that can target CDK1 as potential treatments for CRC.

View Article and Find Full Text PDF

"Sichuanvirus", a novel bacteriophage viral genus, able to lyse carbapenem-resistant Klebsiella pneumoniae.

BMC Microbiol

January 2025

Center of Infectious Diseases, West China Hospital, Sichuan University, Guoxuexiang 37, Chengdu, 610041, China.

Background: Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a severe threat for human health and urgently needs new therapeutic approaches. Lytic bacteriophages (phages) are promising clinically viable therapeutic options against CRKP. We attempted to isolate lytic phages against CRKP of sequence type 11 and capsular type 64 (ST11-KL64), the predominant type in China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!