Serotonergic neurons in the dorsal raphe nucleus mediate the arousal-promoting effect of orexin during isoflurane anesthesia in male rats.

Neuropeptides

Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China. Electronic address:

Published: June 2019

Previous studies have demonstrated that the activation of orexinergic neurons facilitates the recovery of animals from general anesthesia. Moreover, serotonergic neurons that receive projections from orexin neurons have also been shown to participate in sleep-wakefulness regulation. In the present study, we aimed to explore whether orexinergic neurons facilitate emergence from isoflurane anesthesia in rats by activating serotonergic neurons. Orexin A (30 or 100 pmol), orexin B (30 or 100 pmol), and their respective antagonists SB-334867 and TCS-OX2-29 (5 or 20 μg) were microinjected into the dorsal raphe nucleus (DRN) of rats, and their effects on induction and emergence times were analyzed. Electroencephalogram (EEG) changes were also recorded and analyzed to illuminate the effect of orexin injection into the DRN on cortical excitability under isoflurane anesthesia. Activation of serotonergic neurons was detected via immunohistochemical analysis of c-Fos expression following orexin administration. Our results indicated that injection of neither orexins nor orexin antagonists into the rat DRN exerted an impact on induction time, whereas orexin-A injection (100 pmol) enhanced arousal when compared with the saline group. In contrast, administration of orexin receptor type 1 antagonist SB-334867 (20 μg) prolonged emergence time from isoflurane anesthesia. Microinjection of orexin-A induced an arousal pattern on EEG, and decreased the burst suppression ratio under isoflurane anesthesia. Isoflurane anesthesia inhibited the activity of serotonergic neurons, as shown by decrease in the number of c-Fos-immunoreactive serotonergic neurons when compared with the sham group. This inhibitory effect was partially reversed by administration of orexin-A. Taken together, our findings suggest that orexinergic signals facilitate emergence from isoflurane anesthesia, at least partially, by reversing the effects of isoflurane on serotonergic neurons of the DRN.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.npep.2019.03.004DOI Listing

Publication Analysis

Top Keywords

serotonergic neurons
28
isoflurane anesthesia
28
neurons
9
dorsal raphe
8
raphe nucleus
8
orexin
8
isoflurane
8
anesthesia
8
orexinergic neurons
8
facilitate emergence
8

Similar Publications

Regulation of neural stem cells by innervating neurons.

J Neurochem

January 2025

Neurosciences and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.

The adult central nervous system (CNS) hosts several niches, in which the neural stem and precursor cells (NPCs) reside. The subventricular zone (SVZ) lines the lateral brain ventricles and the subgranular zone (SGZ) is located in the dentate gyrus of the hippocampus. SVZ and SGZ NPCs replace neurons and glia in the homeostatic as well as diseased or injured states.

View Article and Find Full Text PDF

Parkinson's disease arises from the degeneration of dopaminergic neurons in the substantia nigra pars compacta, leading to motor symptoms such as akinesia, rigidity, and tremor at rest. The non-motor component of Parkinson's disease includes increased neuropathic pain, the prevalence of which is 4 to 5 times higher than the general rate. By studying a mouse model of Parkinson's disease induced by 6-hydroxydopamine, we assessed the impact of dopamine depletion on pain modulation.

View Article and Find Full Text PDF

Enteroendocrine cells (EECs) are a rare cell type of the intestinal epithelium. Various subtypes of EECs produce distinct repertoires of monoamines and neuropeptides which modulate intestinal motility and other physiologies. EECs also possess neuron-like properties, suggesting a potential vulnerability to ingested environmental neurotoxicants.

View Article and Find Full Text PDF

Ancient emergence of neuronal heterogeneity in the enteric nervous system of jawless vertebrates.

Dev Biol

January 2025

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA. Electronic address:

While the enteric nervous system (ENS) of jawed vertebrates is largely derived from the vagal neural crest, lamprey are jawless vertebrates that lack the vagal neural crest, yet possess enteric neurons derived from late-migrating Schwann cell precursors. To illuminate homologies between the ENS of jawed and jawless vertebrates, here we examine the diversity and distribution of neuronal subtypes within the intestine of the sea lamprey during late embryonic and ammocete stages. In addition to previously described 5-HT-immunoreactive serotonergic neurons, we identified NOS and VIP neurons, consistent with motor neuron identity.

View Article and Find Full Text PDF

Catecholaminergic dysfunction drives postural and locomotor deficits in a mouse model of spinal muscular atrophy.

Cell Rep

January 2025

Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA. Electronic address:

Article Synopsis
  • Understanding posture is crucial for how mammals move, and dysregulation of certain brain chemicals, specifically dopamine and noradrenaline, can lead to motor problems in diseases like spinal muscular atrophy (SMA).
  • Research using a mouse model of SMA revealed that the loss of synapses in the spinal neurons, caused by non-cell autonomous mechanisms, contributes to motor dysfunction and postural issues.
  • Restoring a specific protein (survival motor neuron) in either catecholaminergic or serotonergic neurons can improve movement, but significant postural issues only improve with restoration in both neuron types or treatment with l-dopa, highlighting new potential treatment strategies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!