Background: Silica-ε-polycaprolactone-nanoparticles (SiPCL-NPs) represent a promising tool for laser-tissue soldering in the brain. After release of the SiPCL-NPs in the brain, neuronal differentiation might be modulated. The present study was performed to determine effects of SiPCL-NP-exposure at different stages of neuronal differentiation in neuron-like SH-SY5Y cells. The resulting phenotypes were analyzed quantitatively and signaling pathways involved in neuronal differentiation and degeneration were studied. SH-SY5Y cells were differentiated with all-trans retinoic acid or staurosporine to obtain predominantly cholinergic or dopaminergic neurons. The resulting phenotype was analyzed at the end of differentiation with and without the SiPCL-NPs given at various times during differentiation.
Results: Exposure to SiPCL-NPs before and during differentiation led to a decreased cell viability of SH-SY5Y cells depending on the differentiation protocol used. SiPCL-NPs co-localized with the neuronal marker β-3-tubulin but did not alter the morphology of these cells. A significant decrease in the number of tyrosine hydroxylase (TH) immunoreactive neurons was found in staurosporine-differentiated cells when SiPCL-NPs were added at the end of the differentiation. TH-protein expression was also significantly downregulated when SiPCL-NPs were applied in the middle of differentiation. Protein expression of the marker for the dopamine active transporter (DAT) was not affected by SiPCL-NPs. SiPCL-NP-exposure predominantly decreased the expression of the high-affinity choline transporter 1 (CHT1) when the NPs were given before the differentiation. Pathways involved in neuronal differentiation, namely Akt, MAP-K, MAP-2 and the neurodegeneration-related markers β-catenin and GSK-3β were not altered by NP-exposure.
Conclusions: The decrease in the number of dopaminergic and cholinergic cells may implicate neuronal dysfunction, but the data do not provide evidence that pathways relevant for differentiation and related to neurodegeneration are impaired.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6442417 | PMC |
http://dx.doi.org/10.1186/s12951-019-0482-2 | DOI Listing |
Cell Death Discov
January 2025
Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
The neuromuscular junction (NMJ) is essential for transmitting signals from motor neurons (MNs) to skeletal muscles (SKMs), and its dysfunction can lead to severe motor disorders. However, our understanding of the NMJ is limited by the absence of accurate human models. Although human induced pluripotent stem cell (iPSC)-derived models have advanced NMJ research, their application is constrained by challenges such as limited differentiation efficiency, lengthy generation times, and cryopreservation difficulties.
View Article and Find Full Text PDFInsects
January 2025
Centre for Mind/Brain Sciences (CIMeC), University of Trento, 38068 Rovereto, Italy.
severely damages the production of berry and stone fruits in large parts of the world. Unlike , which reproduces on overripe and fermenting fruits on the ground, prefers to lay its eggs in ripening fruits still on the plants. Flies locate fruit hosts by their odorant volatiles, which are detected and encoded by a highly specialised olfactory system before being translated into behaviour.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia.
The ultrastructural organization of the nuclei of the tegmental region in juvenile chum salmon () was examined using transmission electron microscopy (TEM). The dorsal tegmental nuclei (DTN), the nucleus of (NFLM), and the nucleus of the oculomotor nerve (NIII) were studied. The ultrastructural examination provided detailed ultrastructural characteristics of neurons forming the tegmental nuclei and showed neuro-glial relationships in them.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Ophthalmology, Boston Children's Hospital, Boston, MA 02115, USA.
Background/objectives: Strabismus is the most common ocular disorder of childhood. Three rare, recurrent genetic duplications have been associated with both esotropia and exotropia, but the mechanisms by which they contribute to strabismus are unknown. This work aims to investigate the mechanisms of the smallest of the three, a 23 kb duplication on chromosome 4 (hg38|4:25,554,985-25,578,843).
View Article and Find Full Text PDFGenes (Basel)
December 2024
Institute for Complex Systems and Mathematical Biology, King's College, University of Aberdeen, Old Aberdeen AB24 3UE, UK.
Background/objectives: A prominent endophenotype in Autism Spectrum Disorder (ASD) is the synaptic plasticity dysfunction, yet the molecular mechanism remains elusive. As a prototype, we investigate the postsynaptic signal transduction network in glutamatergic neurons and integrate single-cell nucleus transcriptomics data from the Prefrontal Cortex (PFC) to unveil the malfunction of translation control.
Methods: We devise an innovative and highly dependable pipeline to transform our acquired signal transduction network into an mRNA Signaling-Regulatory Network (mSiReN) and analyze it at the RNA level.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!