KRAS-driven non-small cell lung cancer (NSCLC) patients have no effective targeted treatment. In this study, we aimed to investigate targeting epidermal growth factor receptor () as a therapeutic approach in KRAS-driven lung cancer cells. We show that ablation of significantly suppressed tumor growth in KRAS-dependent cells and induced significantly higher expression of CX chemokine receptor 7 (CXCR7) and activation of MAPK (ERK1/2). Conversely, rescue of EGFR led to CXCR7 downregulation in cells. Dual EGFR and CXCR7 inhibition led to substantial reduction of MAPK (pERK) and synergistic inhibition of cell growth. Analysis of two additional knockout NSCLC cell lines using CRISPR/Cas9 revealed genotype dependency of CXCR7 expression. In addition, treatment of different cells with gefitinib increased CXCR7 expression in but decreased it in cells. CXCR7 protein expression was detected in all NSCLC patient samples, with higher levels in adenocarcinoma as compared to squamous cell lung carcinoma and healthy control cases. In conclusion, EGFR and CXCR7 have a crucial interaction in NSCLC, and dual inhibition may be a potential therapeutic option for NSCLC patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6520904PMC
http://dx.doi.org/10.3390/cancers11040455DOI Listing

Publication Analysis

Top Keywords

cell lung
12
lung cancer
12
chemokine receptor
8
non-small cell
8
epidermal growth
8
growth factor
8
factor receptor
8
nsclc patients
8
egfr cxcr7
8
cxcr7 expression
8

Similar Publications

Purpose: Mobocertinib is an oral epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that targets exon 20 insertion (ex20ins) mutations in non-small cell lung cancer (NSCLC). This open-label, phase III trial (EXCLAIM-2: ClinicalTrials.gov identifier: NCT04129502) compared mobocertinib versus platinum-based chemotherapy as first-line treatment of ex20ins+ advanced/metastatic NSCLC.

View Article and Find Full Text PDF

Fatuamide A, a Hybrid PKS/NRPS Metallophore from a sp. Marine Cyanobacterium Collected in American Samoa.

J Nat Prod

January 2025

Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States.

A structurally novel metabolite, fatuamide A (), was discovered from a laboratory cultured strain of the marine cyanobacterium sp., collected from Faga'itua Bay, American Samoa. A bioassay-guided approach using NCI-H460 human lung cancer cells directed the isolation of fatuamide A, which was obtained from the most cytotoxic fraction.

View Article and Find Full Text PDF

Purpose: After failing primary and secondary hormonal therapy, castration-resistant and neuroendocrine prostate cancer metastatic to the bone is invariably lethal, although treatment with docetaxel and carboplatin can modestly improve survival. Therefore, agents targeting biologically relevant pathways in PCa and potentially synergizing with docetaxel and carboplatin in inhibiting bone metastasis growth are urgently needed.

Experimental Design: Phosphorylated (activated) AXL expression in human prostate cancer bone metastases was assessed by immunohistochemical staining.

View Article and Find Full Text PDF

Tissue-specific T cell immune responses play a critical role in maintaining organ health but can also drive immune pathology during both autoimmunity and alloimmunity. The mechanisms controlling intratissue T cell programming remain unclear. Here, we leveraged a nonhuman primate model of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation to probe the biological underpinnings of tissue-specific alloimmune disease using a comprehensive systems immunology approach including multiparameter flow cytometry, population-based transcriptional profiling, and multiplexed single-cell RNA sequencing and TCR sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!