A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Automated Accelerometer-Based Gait Event Detection During Multiple Running Conditions. | LitMetric

The identification of the initial contact (IC) and toe off (TO) events are crucial components of running gait analyses. To evaluate running gait in real-world settings, robust gait event detection algorithms that are based on signals from wearable sensors are needed. In this study, algorithms for identifying gait events were developed for accelerometers that were placed on the foot and low back and validated against a gold standard force plate gait event detection method. These algorithms were automated to enable the processing of large quantities of data by accommodating variability in running patterns. An evaluation of the accuracy of the algorithms was done by comparing the magnitude and variability of the difference between the back and foot methods in different running conditions, including different speeds, foot strike patterns, and outdoor running surfaces. The results show the magnitude and variability of the back-foot difference was consistent across running conditions, suggesting that the gait event detection algorithms can be used in a variety of settings. As wearable technology allows for running gait analyses to move outside of the laboratory, the use of automated accelerometer-based gait event detection methods may be helpful in the real-time evaluation of running patterns in real world conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6480623PMC
http://dx.doi.org/10.3390/s19071483DOI Listing

Publication Analysis

Top Keywords

gait event
20
event detection
20
running conditions
12
running gait
12
gait
9
running
9
automated accelerometer-based
8
accelerometer-based gait
8
gait analyses
8
detection algorithms
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!