Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We report on experiments and modeling on a rotating confined liquid that is forced by circumferential jets coaxial with the rotation axis, wherein system-scale secondary flows are observed to emerge. The jets are evenly divided in number between inlets and outlets and have zero net mass transport. For low forcing strengths the sign of this flow depends on the sign of a sloped end cap, which simulates a planetary β plane. For increased forcing strengths the secondary flow direction is insensitive to the slope sign, and instead appears to be dominated by an asymmetry in the forcing mechanism, namely, the difference in radial divergence between the inlet and outlet jet profiles. This asymmetry yields a net radial velocity that is affected by the Coriolis force, inducing secondary zonal flow.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.99.023108 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!