A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mode locking in periodically forced gradient frequency neural networks. | LitMetric

Mode locking in periodically forced gradient frequency neural networks.

Phys Rev E

Department of Psychological Sciences and CT Institute for Brain and Cognitive Science, University of Connecticut, Storrs, Connecticut 06269, USA.

Published: February 2019

We study mode locking in a canonical model of gradient frequency neural networks under periodic forcing. The canonical model is a generic mathematical model for a network of nonlinear oscillators tuned to a range of distinct frequencies. It is mathematically more tractable than biological neuron models and allows close analysis of mode-locking behaviors. Here we analyze individual modes of synchronization for a periodically forced canonical model and present a complete set of driven behaviors for all parameter regimes available in the model. Using a closed-form approximation, we show that the Arnold tongue (i.e., locking region) for k:m synchronization gets narrower as k and m increase. We find that numerical simulations of the canonical model closely follow the analysis of individual modes when forcing is weak, but they deviate at high forcing amplitudes for which oscillator dynamics are simultaneously influenced by multiple modes of synchronization.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.99.022421DOI Listing

Publication Analysis

Top Keywords

canonical model
16
mode locking
8
periodically forced
8
gradient frequency
8
frequency neural
8
neural networks
8
individual modes
8
modes synchronization
8
model
6
locking periodically
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!