Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In many realistic systems, maximum entropy principle (MEP) analysis provides an effective characterization of the probability distribution of network states. However, to implement the MEP analysis, a sufficiently long-time data recording in general is often required, e.g., hours of spiking recordings of neurons in neuronal networks. The issue of whether the MEP analysis can be successfully applied to network systems with data from short-time recordings has yet to be fully addressed. In this work, we investigate relationships underlying the probability distributions, moments, and effective interactions in the MEP analysis and then show that, with short-time recordings of network dynamics, the MEP analysis can be applied to reconstructing probability distributions of network states that is much more accurate than the one directly measured from the short-time recording. Using spike trains obtained from both Hodgkin-Huxley neuronal networks and electrophysiological experiments, we verify our results and demonstrate that MEP analysis provides a tool to investigate the neuronal population coding properties for short-time recordings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.99.022409 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!