In this work we extend the Caspar-Klug construction to the archaeal viruses, which in recent years have captured the attention of many researchers for their ability to thrive in extreme environments. We assume that the shells of archaeal viruses are composed of hexamers and pentamers-as is true for icosahedral viruses-together with heptamers, necessary to introduce negative Gauss curvature. Following the original work of Caspar and Klug, we first construct models capable of reproducing the shape observed in electron microscopy images of archaeal viruses. Next, using the technique of kirigami, we present a systematic way to formulate archaeal virus templates from regular hexagonal lattices. Finally, we utilize the presented techniques to build finite element models of archaeal virus geometries and investigate their shapes as a function of material properties. In particular, using thin-shell elasticity theory, we describe a buckling transition as a function of a modified Föppl-von Kármán number γ^{★} and we show how changes in γ^{★} may initiate the tail formation in the Acidianus two-tailed archaeal virus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.99.022413 | DOI Listing |
BMC Microbiol
January 2025
Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China.
Background: Salmonella enterica serovar Typhimurium is one of the most common serovars of Salmonella associated with clinical cases. It not only leads to diarrhea and mortality raised in livestock and poultry farming, but also poses a risk to food safety.
Results: In this study, a lytic bacteriophage named ZK22 was isolated and identified from sewage.
Environ Microbiome
January 2025
Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
Background: Viruses that infect prokaryotes (phages) constitute the most abundant group of biological agents, playing pivotal roles in microbial systems. They are known to impact microbial community dynamics, microbial ecology, and evolution. Efforts to document the diversity, host range, infection dynamics, and effects of bacteriophage infection on host cell metabolism are extremely underexplored.
View Article and Find Full Text PDFSci Rep
January 2025
Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi'an, 710061, Shaanxi, China.
Bacteria, fungi, archaea, and viruses are reflective organisms that indicate soil health. Investigating the impact of crude oil pollution on the community structure and interactions among bacteria, fungi, archaea, and viruses in Calamagrostis epigejos soil can provide theoretical support for remediating crude oil pollution in Calamagrostis epigejos ecosystems. In this study, Calamagrostis epigejos was selected as the research subject and subjected to different levels of crude oil addition (0 kg/hm, 10 kg/hm, 40 kg/hm).
View Article and Find Full Text PDFEnviron Microbiol
January 2025
School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Queensland, Australia.
Viruses infecting archaea play significant ecological roles in marine ecosystems through host infection and lysis, yet they have remained an underexplored component of the virosphere. In this study, we recovered 451 archaeal viruses from a subtropical estuary, identifying 63 that are associated with the dominant marine order Poseidoniales (Marine Group II Archaea). Phylogenetic analyses of a subset of complete and nearly-complete viral genomes assigned these viruses to the order Magrovirales, a lineage of Poseidoniales viruses, and identified a novel group of viruses distinct from Magrovirales.
View Article and Find Full Text PDFBMC Res Notes
January 2025
Department of Microbiology and Immunology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt.
Objectives: The aim of this study is to screen for, isolate and characterize a bacteriophage designated ɸEcM-vB1 with confirmed lytic activity against multidrug-resistant (MDR) E. coli. Methods done in this research are bacteriophage isolation, purification, titer determination, bacteriophage morphology, host range determination, bacteriophage latent period and burst size determination, genomic analysis by restriction enzymes, and bacteriophage total protein content determination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!