Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We introduce "bond-counting" potentials, which provide an elementary description of covalent bonding. These simplistic potentials are intended for studies of the mechanisms behind a variety of phase transitions in elemental melts, including the liquid-liquid phase transitions (LLPTs) in phosphorus and bismuth. As a first study employing such potentials, an analytic solution of a one-dimensional model system is presented, including its thermodynamic properties and its structure factor. In the simplest case, the chemical valency of each atom is 1, and either single atoms or diatomic molecules are present. At low temperatures and moderate pressures, the system consists almost exclusively of molecules, and single atoms act as topological defects. A slightly more complicated case involves a valency of 2, with either single or double bonding. This system exhibits a first-order LLPT from a molecular to a polymeric phase as in phosphorus. In this case, the one-dimensional model system exhibits phase separation for finite-sized systems at low temperatures. A variant of this system also exhibits a nonequilibrium phase transformation upon heating the molecular condensed phase, qualitatively similar to boiling in white phosphorus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.99.022140 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!