A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bond-counting potentials: A classical many-body model of covalent bonding with exact solutions in one dimension. | LitMetric

Bond-counting potentials: A classical many-body model of covalent bonding with exact solutions in one dimension.

Phys Rev E

Department of Physics, NRCN, P.O. Box 9001, Beer-Sheva 84190, Israel.

Published: February 2019

We introduce "bond-counting" potentials, which provide an elementary description of covalent bonding. These simplistic potentials are intended for studies of the mechanisms behind a variety of phase transitions in elemental melts, including the liquid-liquid phase transitions (LLPTs) in phosphorus and bismuth. As a first study employing such potentials, an analytic solution of a one-dimensional model system is presented, including its thermodynamic properties and its structure factor. In the simplest case, the chemical valency of each atom is 1, and either single atoms or diatomic molecules are present. At low temperatures and moderate pressures, the system consists almost exclusively of molecules, and single atoms act as topological defects. A slightly more complicated case involves a valency of 2, with either single or double bonding. This system exhibits a first-order LLPT from a molecular to a polymeric phase as in phosphorus. In this case, the one-dimensional model system exhibits phase separation for finite-sized systems at low temperatures. A variant of this system also exhibits a nonequilibrium phase transformation upon heating the molecular condensed phase, qualitatively similar to boiling in white phosphorus.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.99.022140DOI Listing

Publication Analysis

Top Keywords

system exhibits
12
covalent bonding
8
phase transitions
8
one-dimensional model
8
model system
8
single atoms
8
low temperatures
8
phase
6
system
5
bond-counting potentials
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!