A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Real-time monitoring and model-based prediction of purity and quantity during a chromatographic capture of fibroblast growth factor 2. | LitMetric

Process analytical technology combines understanding and control of the process with real-time monitoring of critical quality and performance attributes. The goal is to ensure the quality of the final product. Currently, chromatographic processes in biopharmaceutical production are predominantly monitored with UV/Vis absorbance and a direct correlation with purity and quantity is limited. In this study, a chromatographic workstation was equipped with additional online sensors, such as multi-angle light scattering, refractive index, attenuated total reflection Fourier-transform infrared, and fluorescence spectroscopy. Models to predict quantity, host cell proteins (HCP), and double-stranded DNA (dsDNA) content simultaneously were developed and exemplified by a cation exchange capture step for fibroblast growth factor 2 expressed in Escherichia coliOnline data and corresponding offline data for product quantity and co-eluting impurities, such as dsDNA and HCP, were analyzed using boosted structured additive regression. Different sensor combinations were used to achieve the best prediction performance for each quality attribute. Quantity can be adequately predicted by applying a small predictor set of the typical chromatographic workstation sensor signals with a test error of 0.85 mg/ml (range in training data: 0.1-28 mg/ml). For HCP and dsDNA additional fluorescence and/or attenuated total reflection Fourier-transform infrared spectral information was important to achieve prediction errors of 200 (2-6579 ppm) and 340 ppm (8-3773 ppm), respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6618329PMC
http://dx.doi.org/10.1002/bit.26984DOI Listing

Publication Analysis

Top Keywords

real-time monitoring
8
purity quantity
8
fibroblast growth
8
growth factor
8
chromatographic workstation
8
attenuated total
8
total reflection
8
reflection fourier-transform
8
fourier-transform infrared
8
quantity
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!