Background: The medial forebrain bundle (MFB) is involved in the integration of pleasure and reward. Previous studies have used various stimulation parameters for operant conditioning, though the effectiveness of these parameters has not been systematically studied.

Objectives: The purpose of the present study was to investigate the optimal MFB stimulation parameters for controlling the conditioned behavior of rats.

Methods: We evaluated four factors, including intensity, frequency, pulse duration, and train duration, to determine the effect of each on lever pressure applied by animals. We further compared burst and tonic stimulation in terms of learning and performance abilities.

Results: The number of lever presses increased with each factor. Animals in the burst stimulation group exhibited more lever presses. Furthermore, the average speed in the maze among burst stimulation group subjects was higher.

Conclusion: We determined the optimal parameters for movement control of animals in operant conditioning and locomotor tasks by adjusting various electrical stimulation parameters. Our results reveal that a burst stimulation is more effective than a tonic stimulation for increasing the moving speed and number of lever presses. The use of this stimulation technique also allowed us to minimize the training required to control animal behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000497151DOI Listing

Publication Analysis

Top Keywords

stimulation parameters
16
operant conditioning
12
lever presses
12
burst stimulation
12
stimulation
10
medial forebrain
8
forebrain bundle
8
parameters operant
8
tonic stimulation
8
number lever
8

Similar Publications

Purpose: Increasing life expectancy and advances in cancer treatment will lead to more patients needing both radiation therapy (RT) and cardiac implantable electronic devices (CIEDs). CIEDs, including pacemakers and defibrillators, are essential for managing cardiac arrhythmias and heart failure. Telemetric monitoring of CIEDs checks battery status, lead function, settings, and diagnostic data, thereby identifying software deviations or damage.

View Article and Find Full Text PDF

Characterizing astrocyte-mediated neurovascular coupling by combining optogenetics and biophysical modeling.

J Cereb Blood Flow Metab

January 2025

Neuronal Mass Dynamics Lab, Department of Biomedical Engineering, Florida International, University, Miami, FL, USA.

Vasoactive signaling from astrocytes is an important contributor to the neurovascular coupling (NVC), which aims at providing energy to neurons during brain activation by increasing blood perfusion in the surrounding vasculature. Pharmacological manipulations have been previously combined with experimental techniques (e.g.

View Article and Find Full Text PDF

Mechanical loading plays a pivotal role in regulating bone anabolic processes. Understanding the optimal mechanical loading parameters for cellular responses is critical for advancing strategies in orthopedic bioreactor-based bone tissue engineering. This study developed a poly (sorbitol sebacate) (PSS) filmscaffold with a sorbitol-to-sebacic acid molar ratio of 1:4.

View Article and Find Full Text PDF

Objectives: Osteoporosis (OP) is a systemic skeletal disease characterized by low bone mineral density and deterioration of bone architecture, resulting in bone strength reduction and increased fracture susceptibility. Estrogen deficiency in post-menopausal women is possibly responsible for the instability between bone formation and resorption, which is managed by specific osteoclastogenic cytokines that may be leading to resorption. This study aims to estimation of the concentrations of interleukins -8, -17, -22, beside to certain parameters in blood serum and explained their roles in the development of osteoporosis pathogenicity in postmenopausal women.

View Article and Find Full Text PDF

Oxidative stress and neuroinflammation play a pivotal role in pathomechanisms of brain ischemia. Our research aimed to formulate a nanotheranostic system for delivering carnosic acid as a neuroprotective agent with anti-oxidative and anti-inflammatory properties to ischemic brain tissue, mimicked by organotypic hippocampal cultures (OHCs) exposed to oxygen-glucose deprivation (OGD). In the first part of this study, the nanocarriers were formulated by encapsulating two types of nanocores (nanoemulsion (AOT) and polymeric (PCL)) containing CA into multilayer shells using the sequential adsorption of charged nanoobjects method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!