A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tight-binding model for electronic structure of hexagonal boron phosphide monolayer and bilayer. | LitMetric

Tight-binding model for electronic structure of hexagonal boron phosphide monolayer and bilayer.

J Phys Condens Matter

School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, People's Republic of China.

Published: July 2019

Graphene-like hexagonal boron phosphide with its moderate band gap and high carrier mobility is considered to be a high potential material for electronics and optoelectronics. In this work, the tight-binding Hamiltonian of hexagonal boron phosphide monolayer and bilayer with two stacking orders are derived in detail. Including up to fifth-nearest-neighbor in plane and next-nearest-neighbor interlayer hoppings, the tight-binding approximated band structure can well reproduce the first-principle calculations based on the screened Heyd-Scuseria-Ernzerhof hybrid functional level over the entire Brillouin zone. The band gap deviations for monolayer and bilayer between our tight-binding and first-principle results are only 2 meV. The low-energy effective Hamiltonian matrix and band structure are obtained by expanding the full band structure close to the K point. The results show that the iso-energetic lines of maximum valence band in the vicinity of K point undergo a pseudo-Lifshitz transition from h-BP monolayer to AB_B-P or AB_B-B bilayer. The mechanism of pseudo-Lifshitz transition can be attributed to two interlayer hoppings rather than one.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ab1528DOI Listing

Publication Analysis

Top Keywords

hexagonal boron
12
boron phosphide
12
monolayer bilayer
12
band structure
12
phosphide monolayer
8
band gap
8
interlayer hoppings
8
pseudo-lifshitz transition
8
band
6
tight-binding
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!