Graphene-ferrocene functionalized cyclodextrin composite with high electrochemical recognition capability for phenylalanine enantiomers.

Bioelectrochemistry

Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.

Published: August 2019

Graphene oxide (GO) modified with ferrocene (Fc) was successfully assembled via the π-π interaction (GO-Fc) and had the features of large surface area and high loading. Then, a novel composite was synthesized via β-cyclodextrin (β-CD) functionalized GO-Fc by combining the advantages of GO-Fc and β-CD. An efficient chiral electrochemical sensing interface was constructed by using the rGO-Fc-CD composite as the electrode modification for the recognition of phenylalanine (Phe) enantiomers. The successful synthesis of the composites was confirmed by FTIR, XRD, TGA, SEM, and XPS results. The host-guest inclusion interaction was detected by ultraviolet spectroscopy and DPV. The recognition results demonstrated that the rGO-Fc-CD/GCE showed a higher chiral recognition capability for L-Phe than for D-Phe. The enantioselectivity coefficient (I/I) of the proposed sensor was 2.47. The LOD values of 27 nM and 52 nM (S/N = 3) for L-Phenylalanine and D-Phenylalanine were obtained for this electrochemical sensor. The as-synthesized material was successfully exploited for the recognition of Phe enantiomers, indicating that the developed sensor has wide application prospects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioelechem.2019.03.006DOI Listing

Publication Analysis

Top Keywords

recognition capability
8
phe enantiomers
8
recognition
5
graphene-ferrocene functionalized
4
functionalized cyclodextrin
4
cyclodextrin composite
4
composite high
4
high electrochemical
4
electrochemical recognition
4
capability phenylalanine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!