A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Patient-attentive sequential strategy for perimetry-based visual field acquisition. | LitMetric

Patient-attentive sequential strategy for perimetry-based visual field acquisition.

Med Image Anal

ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland.

Published: May 2019

Perimetry is a non-invasive clinical psychometric examination used for diagnosing ophthalmic and neurological conditions. At its core, perimetry relies on a subject pressing a button whenever they see a visual stimulus within their field of view. This sequential process then yields a 2D visual field image that is critical for clinical use. Perimetry is painfully slow however, with examinations lasting 7-8 minutes per eye. Maintaining high levels of concentration during that time is exhausting for the patient and negatively affects the acquired visual field. We introduce PASS, a novel perimetry testing strategy, based on reinforcement learning, that requires fewer locations in order to effectively estimate 2D visual fields. PASS uses a selection policy that determines what locations should be tested in order to reconstruct the complete visual field as accurately as possible, and then separately reconstructs the visual field from sparse observations. Furthermore, PASS is patient-specific and non-greedy. It adaptively selects what locations to query based on the patient's answers to previous queries, and the locations are jointly selected to maximize the quality of the final reconstruction. In our experiments, we show that PASS outperforms state-of-the-art methods, leading to more accurate reconstructions while reducing between 30% and 70% the duration of the patient examination.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.media.2019.03.002DOI Listing

Publication Analysis

Top Keywords

visual field
20
visual
7
field
6
patient-attentive sequential
4
sequential strategy
4
strategy perimetry-based
4
perimetry-based visual
4
field acquisition
4
perimetry
4
acquisition perimetry
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!