Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The issue that the residual Cr(VI) in the reduced chromite ore processing residue (rCOPR) is slowly released during deposition has attracted increasing attention. However, the speciation and leaching behaviors of Cr(VI) in rCOPR are still not clear, which is essential for revealing the release mechanism of Cr(VI). In this study, ettringite was determined to be the host phase of Cr(VI) in ferrous sulfate-reduced COPR by scanning electron microscopy (SEM), microfocus X-ray fluorescence spectroscopy (μ-XRF) and aberration-corrected scanning transmission electron microscopy (Cs-STEM). This is because the channel structure of ettringite makes it relatively easy for sulfate to be replaced by chromate with similar structure and thermochemical radius. Furthermore, the investigation on the leaching behavior and mechanism of Cr(VI) in rCOPR eroded by environmental factors showed that carbonates, sulfates and acid can promote the release of Cr(VI). Among them, the erosion effect of HCl on rCOPR is weaker than that of NaCO and NaSO because rCOPR possesses a high buffering reserve of alkalinity. In addition, the erosion of rCOPR by NaCO and NaSO can change Cr(VI) speciation in rCOPR. The results implied that the environmental risk of Cr(VI) release during the deposition of rCOPR should deserve careful assessment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2019.03.097 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!