Predicting future changes in habitat-associated species traits is an important step in understanding the ecological and evolutionary consequences of environmental change. However, models projecting phenotypic responses to future climate change typically assume populations will respond similarly across the range of a species, while local adaptation and spatial variation in environmental changes are rarely considered. In this study, among-population phenotypic variability was coupled with geographic variation in anticipated hydrologic changes to examine patterns of population-level phenotypic changes expected under future climatic change. To estimate phenotypic responses to watershed hydrology, phenotype-environment associations between body shape and contemporary streamflow were quantified among populations of six species of fishes (Cyprinidae). Future streamflow estimates (2070-2099) were then used to project body shapes within populations, assuming the same phenotype-environment relationships. All species exhibited significant associations between body shape and contemporary streamflow discharge and variability. However, these relationships were not consistent, even among species occupying similar vertical positions in the water column. When these phenotype-environment relationships were projected into future streamflow conditions, populations are not expected to respond uniformly across the species' ranges, and all but one species exhibited projected morphologies outside of the current range of morphological variation. These findings suggest local adaptation and spatial heterogeneity in environmental changes interact to influence variation in the degree of expected phenotypic responses to climate change at both the species and population level.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.03.292DOI Listing

Publication Analysis

Top Keywords

phenotypic responses
12
future climate
8
climate change
8
local adaptation
8
adaptation spatial
8
environmental changes
8
associations body
8
body shape
8
shape contemporary
8
contemporary streamflow
8

Similar Publications

Identification and characterization of a novel QTL for barley yellow mosaic disease resistance from bulbous barley.

Plant Genome

March 2025

Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.

Winter barley (Hordeum vulgare) production areas in the middle and lower reaches of the Yangtze River are severely threatened by barley yellow mosaic disease, which is caused by Barley yellow mosaic virus and Barley mild mosaic virus. Improving barley disease resistance in breeding programs requires knowledge of genetic loci in germplasm resources. In this study, bulked segregant analysis (BSA) identified a novel major quantitative trait loci (QTL) QRym.

View Article and Find Full Text PDF

Advancing precision and personalized breast cancer treatment through multi-omics technologies.

Am J Cancer Res

December 2024

School of Basic Medical Sciences, Jiamusi University No. 258, Xuefu Street, Xiangyang District, Jiamusi 154007, Heilongjiang, China.

Breast cancer is the most common malignant tumour in women, with more than 685,000 women dying of breast cancer each year. The heterogeneity of breast cancer complicates both treatment and diagnosis. Traditional methods based on histopathology and hormone receptor status are now no longer sufficient.

View Article and Find Full Text PDF

Unlabelled: SHP1 (PTPN6) and SHP2 (PTPN11) are closely related protein-tyrosine phosphatases (PTPs), which are autoinhibited until their SH2 domains bind paired tyrosine-phosphorylated immunoreceptor tyrosine-based inhibitory/switch motifs (ITIMs/ITSMs). These PTPs bind overlapping sets of ITIM/ITSM-bearing proteins, suggesting that they might have some redundant functions. By studying T cell-specific single and double knockout mice, we found that SHP1 and SHP2 redundantly restrain naïve T cell differentiation to effector and central memory phenotypes, with SHP1 playing the dominant role.

View Article and Find Full Text PDF

The levels of biogenesis of lysosome organelles complex 1 subunit 1 (BLOC1S1) control mitochondrial and endolysosome organelle homeostasis and function. Reduced fidelity of these vacuolar organelles is increasingly being recognized as important in instigating cell-autonomous immune cell activation. We reasoned that exploring the role of BLOC1S1 in CD4 T cells, may further advance our understanding of regulatory events linked to mitochondrial and/or endolysosomal function in adaptive immunity.

View Article and Find Full Text PDF

Amphibians are among the most threatened vertebrate taxa globally. Their global decline necessitates effective conservation actions to bolster populations across both the larval and adult stages. Constructing man-made ponds is one action proven to enhance reproduction in pond-breeding amphibians.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!