Tunable luminescence (quenching or blue shift) of HNA/OS-LRH composites (HNA is 3-hydroxy-2-naphthoic acid; OS is the anionic surfactant of 1-octanesulfonic acid sodium; LRHs are layered rare-earth hydroxides, R = Tb, Y) in the solid state and delaminated state is reported, which is utilized as an effective fluorescent probe for detecting metal ions. HNA/OS species are intercalated into LRH layers to generate composites of HNA OS-LTbH ( x = 0.10, 0.15, 0.20 , 0.25) and HNA OS-LYH ( y = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30). In the solid state, LYH composites exhibit green emissions (from 493 to 504 nm) with a large blue shift in comparison to the 542 nm emission of free HNA anions, while in the delaminated state in formamide (FM), the composites display blue emission (480 nm) relative to the green emission (512 nm) of an HNA soltuion in FM. However, LTbH composites display coquenched luminescence in both the solid state and delaminated state. Also, HNAOS-1:1-LYH, HNAOS-1:2-LYH, and HNAOS-1:1-LYH (1:1 and 1:2 are HNA:NaOH molar ratios) show significantly elongated fluorescence lifetimes of 15.35, 14.37, and 12.72 ns, respectively, in comparison with free HNA-Na (6.44 ns), and their quantum yields of 23.40%, 21.97%, and 22.31%, respectively, are much larger than that of free HNA-Na (4.86%). The LTbH composite (HNAOS-1:1-LTbH) has also a relatively higher quantum yield of 12.46%. The HNAOS-1:1-LYH colloid exhibits excellent recognition selectivity for Al over other metal ions (Mg, Co, Ni, Cu, Zn, Pb, Cd, and Hg) with distinct fluorescence sensitization. It shows an intense change in its fluorescence emission when it is bound to Al ions, giving a lower detection limit of 6.32 × 10 M. This is novel research on the fluorescence chemosensing of LRH composites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.8b03636 | DOI Listing |
ACS Nano
January 2025
Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, United States.
Herein, we report the synthesis of two-dimensional TaSeC (2D-TaSeC) nanosheets using electrochemical lithiation in multilayer TaSeC followed by sonication in deionized water. Multilayer TaSeC was obtained via solid-state synthesis of FeTaSeC followed by chemical etching of Fe. 2D-TaSeC exhibited promising electrocatalytic activity for the hydrogen evolution reaction from water compared to multilayer TaSeC and 2D-TaSe.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.
The molecule-electrode interface can regulate both the efficiency and pathways of electron transport through single-molecule junctions (SMJs). The electromechanics of the interface has proven crucial in exposing the underlying mechanisms of electron transmission through SMJs, providing a theoretical base and practical guidance for designing and constructing functional molecular devices. Here we encompass several currently developed methodologies for investigating the electromechanics of molecule-electrode interface and provide an account of their application in elucidating the effects of the molecule-electrode interface on electron transport properties of SMJs.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States.
Recently, we reported on the simple, scalable synthesis of quantum-confined one-dimensional (1D) lepidocrocite titanate nanofilaments (1DLs). Herein, we show, using solid-state UV-vis spectroscopy, that reducing the concentration of aqueous 1DL colloidal suspensions from 40 to 0.01 g/L increases the band gap energy and light absorption onset of dried filtered films from ≈3.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Wuhan Third hospital, Tongren Hospital of Wuhan University, 241 Pengliuyang Road, Wuhan 430060, China. Electronic address:
Parkinson's disease (PD), a neurodegenerative disorder without cure, is characterized by the pathological aggregation of α-synuclein (α-Syn) in Lewy bodies. Classic deposition pathway and condensation pathway contribute to α-Syn aggregation, and liquid-liquid phase separation is the driving force for condensate formation, which subsequently undergo liquid-solid phase separation to form toxic fibrils. Traditional Chinese Medicine (TCM) has a long history in treating neurodegenerative disease, herein; we identified chemicals from herbs that inhibit α-Syn aggregation.
View Article and Find Full Text PDFSci Total Environ
January 2025
China National Environmental Monitoring Centre, Beijing 100012, China.
The riverine dissolved organic matter (DOM) pool constitutes the largest and most dynamic organic carbon reservoir within inland aquatic systems. Human activities significantly alter the distribution of organic matter (OM) in rivers, thereby affecting the availability of DOM. However, the impact of total suspended solids (TSS) on DOM under anthropogenic influence remains insufficiently elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!