Local Transmission of Zika Virus in Miami-Dade County: The Florida Department of Health Rises to the Challenge.

J Public Health Manag Pract

Stamford, Connecticut (Ms Novick); Department of Public Health, East Carolina School of Medicine, Greenville, North Carolina (Dr Novick). Dr Philip is Former Surgeon General, State of Florida, Tallahassee, Florida.

Published: April 2020

As early as 2015, Florida and Centers for Disease Control and Prevention (CDC) public health officials recognized the potential danger of Zika for US residents and visitors. The Zika virus, a mosquito-borne flavivirus, is transmitted through the bite of the Aedes aegypti mosquito. A physician in Miami-Dade notified the Florida Department of Health (DOH) of the first non-travel-related Zika case in the United States. A 23-year old pregnant woman had presented on July 7, 2016, at 23 weeks of gestation, with a 3-day history of fever, widespread pruritic rash, and sore throat. Three more cases, involving men, were reported in Dade and Broward counties. These notifications set into motion additional activities from the DOH's Zika Playbook: increased mosquito surveillance; collaboration with the CDC on recommendations for mosquito abatement techniques; and increased awareness of the risks of Zika. In August, the department reported that active transmission of Zika virus was occurring in one small area in Miami-Dade County known as Wynwood. Mosquito trapping in the area with local transmission identified large numbers of the Zika vector, Aedes aegypti females and a large number of mosquito larval sites. Control efforts included larviciding, eliminating standing water, and backpack and truck spraying of insecticides. A communication strategy was developed that addressed risk mitigation, public concerns over application of noxious pesticides, loss of tourist revenue, and reproductive issues. It was reported on December 28, 2016, that there had been 256 locally acquired cases of infection of Zika, 1011 travel-related cases, and 208 pregnant women with laboratory evidence of Zika. At the end of 2018, 2 years after active Zika virus transmission was controlled in Florida, there have been 101 reported cases of Zika during 2018 but none have been linked to local transmission.

Download full-text PDF

Source
http://dx.doi.org/10.1097/PHH.0000000000000990DOI Listing

Publication Analysis

Top Keywords

zika virus
16
local transmission
12
zika
12
transmission zika
8
miami-dade county
8
florida department
8
department health
8
aedes aegypti
8
zika 2018
8
mosquito
5

Similar Publications

Background And Objectives: Little is known about the clinical course of children born with congenital Zika virus syndrome (CZS). This article aimed to analyze the growth and survival of children with CZS born with microcephaly and children who developed with microcephaly after birth in the 36-month period.

Methods: This is a cohort of children diagnosed with CZS who were monitored in a series of outpatient appointments, with clinical and demographic information and anthropometric measurements collected.

View Article and Find Full Text PDF

Inactivation of Zika Virus with Hydroxypropyl-Beta-Cyclodextrin.

Vaccines (Basel)

January 2025

Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA.

: Zika virus (ZIKV) infection is associated with life-threatening diseases in humans. To date, there are no available FDA-approved therapies or vaccines for the specific treatment or prevention of ZIKV infection. Variation in the ZIKV envelope protein (Env), along with its complex quaternary structure, presents challenges to synthetic approaches for developing an effective vaccine and broadly neutralizing antibodies (bnAbs).

View Article and Find Full Text PDF

Objectives: Arboviruses pose significant public health threats worldwide, with Southeast Asia being a hotspot for these infections. This study aimed to reassess the incidence of dengue, Zika, and chikungunya viruses in patients clinically diagnosed with dengue in East Java, Indonesia in 2023.

Methods: The study included 108 patients admitted to hospitals in Jember, with blood samples collected on admission.

View Article and Find Full Text PDF

Identification of candidate genes involved in Zika virus-induced reversible paralysis of mice.

Sci Rep

January 2025

Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84321-5600, USA.

Zika virus (ZIKV) causes a variety of peripheral and central nervous system complications leading to neurological symptoms such as limb weakness. We used a mouse model to identify candidate genes potentially involved in causation or recovery from ZIKV-induced acute flaccid paralysis. Using Zikv and Chat chromogenic and fluorescence in situ RNA hybridization, electron microscopy, immunohistochemistry, and ZIKV RT-qPCR, we determined that some paralyzed mice had infected motor neurons, but motor neurons are not reduced in number and the infection was not present in all paralyzed mice; hence infection of motor neurons were not strongly correlated with paralysis.

View Article and Find Full Text PDF

Phytochemical-based nanosystems: recent advances and emerging application in antiviral photodynamic therapy.

Nanomedicine (Lond)

January 2025

Clinical Laboratory Science Section, Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang, Selangor, Malaysia.

Phytochemicals are typically natural bioactive compounds or metabolites produced by plants. Phytochemical-loaded nanocarrier systems, designed to overcome bioavailability limitations and enhance therapeutic effects, have garnered significant attention in recent years. The coronavirus disease 2019 (COVID-19) pandemic has intensified interest in the therapeutic application of phytochemicals to combat viral infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!