Purpose: To clinically and genetically characterise a second family with dominant ARL3-related retinitis pigmentosa due to a specific ARL3 missense variant, p.(Tyr90Cys).

Methods: Clinical examination included optical coherence tomography, electroretinography, and ultra-wide field retinal imaging with autofluorescence. Retrospective data were collected from the registry of inherited retinal diseases at Oslo university hospital. DNA was analysed by whole-exome sequencing and Sanger sequencing. The ARL3 missense variant was visualized in a 3D-protein structure.

Results: The phenotype was non-syndromic retinitis pigmentosa with cataract associated with early onset of decreased central vision and central retinal thinning. Sanger sequencing confirmed the presence of a de novo ARL3 missense variant p.(Tyr90Cys) in the index patient and his affected son. We did not find any other cases with rare ARL3 variants in a cohort of 431 patients with retinitis pigmentosa-like disease. By visualizing Tyr90 in the 3D protein structure, it seems to play an important role in packing of the α/β structure of ADP-ribosylation factor-like 3 (ARL3). When changing Tyr90 to cysteine, we observe a loss of interactions in the core of the α/β structure that is likely to affect folding and stability of ARL3.

Conclusion: Our study confirms that the ARL3 missense variant p.(Tyr90Cys) causes retinitis pigmentosa. In 2016, Strom et al. reported the exact same variant in a mother and two children with RP, labelled ?RP83 in the OMIM database. Now the questionmark can be removed, and ARL3 should be added to the list of genes that may cause non-syndromic dominant retinitis pigmentosa.

Download full-text PDF

Source
http://dx.doi.org/10.1080/13816810.2019.1586965DOI Listing

Publication Analysis

Top Keywords

retinitis pigmentosa
20
arl3 missense
16
missense variant
16
dominant arl3-related
8
arl3-related retinitis
8
sanger sequencing
8
variant ptyr90cys
8
α/β structure
8
arl3
7
retinitis
6

Similar Publications

12-year cumulative incidence rate of rare retinal diseases: a nationwide study in Korea.

Eye (Lond)

January 2025

Department of Ophthalmology, Chung-Ang University, College of Medicine, Seoul, South Korea.

Purpose: Understanding the incidence of rare diseases is important in establishing a proper public health care system and setting target diseases in medical research. Herein, we report the 12-year cumulative incidence of seven rare ocular diseases of the retina in South Korea.

Methods: We analysed clinical records of 1,126,250 South Korean population during 2006~2019.

View Article and Find Full Text PDF

Generation of the human iPSC line ESi132-A from a patient with retinitis pigmentosa caused by a mutation in the PRPF31 gene.

Stem Cell Res

December 2024

Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain.

Mutations in the PRPF31 gene are a well-known cause of autosomal dominant retinitis pigmentosa (RP), the most prevalent genetic form of blindness in adults, affecting 1 in 4,000 individuals globally. In this study, peripheral blood mononuclear cells from a patient carrying a heterozygous mutation in PRPF31 were reprogrammed to generate the human iPSC line ESi132-A. This cell line was thoroughly characterized for self-renewal and pluripotency.

View Article and Find Full Text PDF

Purpose: This study aimed to identify a novel recombinant adeno-associated virus (rAAV) capsid variant that can widely transfect the deep retina through intravitreal injection and to assess their effectiveness and safety in gene delivery.

Methods: By adopting the sequences of various cell-penetrating peptides and inserting them into the capsid modification region of AAV2, we generated several novel variants. The green fluorescent protein (GFP)-carrying variants were screened following intravitreal injection.

View Article and Find Full Text PDF

[Research progress in optogenetic therapy for retinitis pigmentosa].

Zhonghua Yan Ke Za Zhi

January 2025

Shenzhen Eye Hospital, Jinan University, Shenzhen Institute of Eye Disease Control, Shenzhen518040, China.

Retinitis pigmentosa (RP) is a group of inherited retinal diseases characterized by progressive loss of photoreceptor cells and retinal pigment epithelium function. Its treatment has long been a focus and challenge in ophthalmic research. Despite advances in therapies such as stem cell transplantation, gene therapy, and retinal prosthetic implants, many difficulties remain.

View Article and Find Full Text PDF

Retinitis Pigmentosa type 25 (RP25) is a form of inherited retinal dystrophy characterized by a progressive loss of rod photoreceptors, subsequent degeneration of cone photoreceptors, and eventually, the retinal pigment epithelium. Caused by mutations in the EYS gene, it is believed to be critical for the structural and functional integrity of the retina. Using a non-integrative RNA reprogramming method, we have generated human induced pluripotent stem cell (hiPSC) lines from RP25 patient and from carriers but asymptomatic daughters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!