Ultralong-range Rydberg trimer molecules are spectroscopically observed in an ultracold gas of Cs(nd_{3/2}) atoms. The anisotropy of the atomic Rydberg state allows for the formation of angular trimers, whose energies may not be obtained from integer multiples of dimer energies. These nonadditive trimers coexist with Rydberg dimers. The existence of such effective three-body interactions is confirmed with the observation of asymmetric line profiles and interpreted by a theoretical approach that includes relativistic spin interactions. Simulations of the observed spectra with and without angular trimer lines lend convincing support to the existence of effective three-body interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.122.103001DOI Listing

Publication Analysis

Top Keywords

effective three-body
12
three-body interactions
12
existence effective
8
interactions
4
interactions cs6s-csnd
4
rydberg
4
cs6s-csnd rydberg
4
rydberg trimers
4
trimers ultralong-range
4
ultralong-range rydberg
4

Similar Publications

Comparative analysis of the human microbiome from four different regions of China and machine learning-based geographical inference.

mSphere

December 2024

Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai, China.

The human microbiome, the community of microorganisms that reside on and inside the human body, is critically important for health and disease. However, it is influenced by various factors and may vary among individuals residing in distinct geographic regions. In this study, 220 samples, consisting of sterile swabs from palmar skin and oral and nasal cavities were collected from Chinese Han individuals living in Shanghai, Chifeng, Kunming, and Urumqi, representing the geographic regions of east, northeast, southwest, and northwest China.

View Article and Find Full Text PDF

This study investigates how laser-induced surface modifications influence key properties such as wear resistance, hardness, and friction in dry and lubricated conditions. The research applies nanosecond pulsed laser treatment to create random, quasi-random, quasi-periodic, and periodic surface structures on the steel surface, aiming to enhance the wear resistance and reduce the coefficient of friction (COF). The frictional performance between the carbon steel ball and the texturized surface was evaluated, including an analysis of the initial friction phase contact (single, double, and multi-contact), with the surface topography assessed before and after wear.

View Article and Find Full Text PDF

We apply the methodology of Lustig, with which rigorous expressions for all thermodynamic properties can be derived in any statistical ensemble, to derive expressions for the calculation of thermodynamic properties in the path integral formulation of the quantum-mechanical isobaric-isothermal (NpT) ensemble. With the derived expressions, thermodynamic properties such as the density, speed of sound, or Joule-Thomson coefficient can be calculated in path integral Monte Carlo simulations, fully incorporating quantum effects without uncontrolled approximations within the well-known isomorphism between the quantum-mechanical partition function and a classical system of ring polymers. The derived expressions are verified by simulations of supercritical helium above the vapor-liquid critical point at selected state points using recent highly accurate ab initio potentials for pairwise and nonadditive three-body interactions.

View Article and Find Full Text PDF

ω Meson from Lattice QCD.

Phys Rev Lett

November 2024

Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität Bonn, 53115 Bonn, Germany.

Many excited states in the hadron spectrum have large branching ratios to three-hadron final states. Understanding such particles from first principles QCD requires input from lattice QCD with one-, two-, and three-meson interpolators as well as a reliable three-body formalism relating finite-volume spectra at unphysical pion mass values to the scattering amplitudes at the physical point. In this work, we provide the first-ever calculation of the resonance parameters of the ω meson from lattice QCD, including an update of the formalism through matching to effective field theories.

View Article and Find Full Text PDF

Light profoundly impacts many aspects of human physiology and behaviour, including the synchronization of the circadian clock, the production of melatonin, and cognition. These effects of light, termed the non-visual effects of light, have been primarily investigated in laboratory settings, where light intensity, spectrum and timing can be carefully controlled to draw associations with physiological outcomes of interest. Recently, the increasing availability of wearable light loggers has opened the possibility of studying personal light exposure in free-living conditions where people engage in activities of daily living, yielding findings associating aspects of light exposure and health outcomes, supporting the importance of adequate light exposure at appropriate times for human health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!