Topological boundary and interface modes are generated in an acoustic waveguide by simple quasiperiodic patterning of the walls. The procedure opens many topological gaps in the resonant spectrum and qualitative as well as quantitative assessments of their topological character are supplied. In particular, computations of the bulk invariant for the continuum wave equation are performed. The experimental measurements reproduce the theoretical predictions with high fidelity. In particular, acoustic modes with high Q factors localized in the middle of a breathable waveguide are engineered by a simple patterning of the walls.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.122.095501 | DOI Listing |
Sensors (Basel)
December 2024
Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106 Warsaw, Poland.
In this paper, we demonstrate that torsional surface elastic waves can propagate along the curved surface of a metamaterial elastic rod (cylinder) embedded in a conventional elastic medium. The crucial parameter of the metamaterial rod is its elastic compliance s44(1)ω, which varies as a function of frequency ω analogously to the dielectric function εω in Drude's model of metals. As a consequence, the elastic compliance s44(1)ω can take negative values s44(1)ω<0 as a function of frequency ω.
View Article and Find Full Text PDFSensitive detection of incident acoustic waves over a broad frequency band offers a faithful representation of photoacoustic pressure transients of biological microstructures. Here, we propose a plasmon waveguide resonance sensor for responding to the photoacoustic impulses. By sequentially depositing Au, MgF, and SiO films on a coverslip, a composite waveguide layer produces a tightly confined optical evanescent field at the SiO-water interface with extremely strong electric field intensity, enabling the retrieval of photoacoustic signals with an estimated noise-equivalent-pressure (NEP) sensitivity of ∼92 Pa and a -6-dB bandwidth of ∼208 MHz.
View Article and Find Full Text PDFJ Acoust Soc Am
December 2024
Acculution ApS, Hvidovre, DK-2650, Denmark.
Thermal and viscous losses are crucial for accurate representation of wave propagation in small conduits. Analytical expressions exist for the series and shunt immitances representing the transmission line characteristics of thermoviscous acoustics in one-dimensional tubes of certain cross sections, and for a subset of these cases, circuit models with constant and positive component values can approximate these generally nonrational solutions. A continued fraction approach introduced previously for the circular cross section has been applied, here, to the slit and equilateral triangular cross-section cases with the same canonical forms and constant and positive component values for the series and shunt immitances.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Max Planck Institute for the Science of Light, Staudtstraße 2, D-91058 Erlangen, Germany.
Entanglement in hybrid quantum systems comprised of fundamentally different degrees of freedom, such as light and mechanics, is of interest for a wide range of applications in quantum technologies. Here, we propose to engineer bipartite entanglement between traveling acoustic phonons in a Brillouin active solid state system and the accompanying light wave. The effect is achieved by applying optical pump pulses to state-of-the-art waveguides, exciting a Brillouin Stokes process.
View Article and Find Full Text PDFUltrasonics
March 2025
Hochschule Offenburg - University of Applied Sciences, Klosterstr. 14, 77723 Gengenbach, Germany.
Quasi-phasematched mixing processes of acoustic waves via second-order nonlinearity are analyzed with two perfectly guided waves generating a leaky wave. The efficiency of such processes is quantified by an acoustic nonlinearity parameter (ANP), defined as the linear growth rate of the leaky wave's amplitude in the initial stage of its spatial evolution. Two approximate ways of estimating the ANP of such processes are suggested.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!