We demonstrate the use of shortcuts to adiabaticity protocols for initialization, read-out, and coherent control of dressed states generated by closed-contour, coherent driving of a single spin. Such dressed states have recently been shown to exhibit efficient coherence protection, beyond what their two-level counterparts can offer. Our state transfer protocols yield a transfer fidelity of ∼99.4(2)% while accelerating the transfer speed by a factor of 2.6 compared to the adiabatic approach. We show bidirectionality of the accelerated state transfer, which we employ for direct dressed state population read-out after coherent manipulation in the dressed state manifold. Our results enable direct and efficient access to coherence-protected dressed states of individual spins and thereby offer attractive avenues for applications in quantum information processing or quantum sensing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.122.090502 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!