Metal-free construction of contiguous quaternary stereocentres with a polycyclic framework.

Chem Commun (Camb)

Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Published: April 2019

A series of contiguous all-carbon quaternary stereocentres with an arene-annulated polycyclic framework were constructed efficiently by a metal-free and atom economic acid-catalyzed method. The reactions could be performed by acid-catalyzed cationic cyclization and rearrangement under mild conditions. Moreover, the resulting polycyclic products showed highly twisted architectures with two perpendicular planes.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9cc01632eDOI Listing

Publication Analysis

Top Keywords

quaternary stereocentres
8
polycyclic framework
8
metal-free construction
4
construction contiguous
4
contiguous quaternary
4
stereocentres polycyclic
4
framework series
4
series contiguous
4
contiguous all-carbon
4
all-carbon quaternary
4

Similar Publications

Nucleophilic aromatic substitutions (SAr) are amongst the most widely used processes in the pharmaceutical and agrochemical industries, allowing convergent assembly of complex molecules through C-C and C-X (X = O, N, S) bond formation. SAr reactions are typically carried out using forcing conditions, involving polar aprotic solvents, stoichiometric bases and elevated temperatures, which do not allow for control over reaction selectivity. Despite the importance of SAr chemistry, there are only a handful of selective catalytic methods reported that rely on small organic hydrogen-bonding or phase-transfer catalysts.

View Article and Find Full Text PDF

Hydrogen-Borrowing-Based Methods for the Construction of Quaternary Stereocentres.

Angew Chem Int Ed Engl

January 2025

Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.

Compounds containing quaternary stereocentres are a valuable motif in biologically active compounds. Herein we present our strategy to utilise the hydrogen borrowing manifold to access α-quaternary ketones via a tandem acceptorless dehydrogenation-cyclisation cascade. This new application of the methodology results in the formation of five- and six-membered carbocycles with a high degree of diastereoselectivity.

View Article and Find Full Text PDF

Heterocycle skeletal editing has recently emerged as a powerful tactic for achieving heterocycle-to-heterocycle transmutation without the need for multistep de novo heterocycle synthesis. However, the enantioselective skeletal editing of heteroarenes through single-atom logic remains challenging. Here we report the enantiodivergent dearomative skeletal editing of indoles and pyrroles via an asymmetric carbon-atom insertion, using trifluoromethyl N-triftosylhydrazones as carbene precursors.

View Article and Find Full Text PDF

Carbohydrates play important roles in medicinal chemistry and biochemistry. However, their synthesis relies on specially designed glycosyl donors, which are often unstable and require multi-step synthesis. Furthermore, the catalytic and stereoselective installation of arylated quaternary stereocentres on sugar rings remains a formidable challenge.

View Article and Find Full Text PDF

The Pd-catalysed decarboxylative asymmetric allylic alkylation (DAAA) has been applied to the enantioselective synthesis of sterically hindered benzofuran-3(2H)-one-derived α-aryl-β-keto esters employing the (R,R)-ANDEN phenyl Trost ligand. A range of substrates were synthesised, employing previously developed aryllead triacetate methodology to install various aryl groups. The resulting α-aryl-α-allyl benzofuran-3(2H)-one DAAA products were obtained in moderate to high yields and in enantioselectivities of up to 96 % ee, with the best results observed for substrates containing a di-ortho-substitution pattern on the aryl ring as well as naphthyl-containing substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!