Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The islet β-cells integrate external signals to modulate insulin secretion to better regulate blood glucose levels during periods of changing metabolic demand. The vesicular monoamine transporter type 2 (VMAT2), an important regulator of CNS neurotransmission, has an analogous role in the endocrine pancreas as a key control point of insulin secretion, with additional roles in regulating β-cell differentiation and proliferation. Here we report on the synthesis and biological characterisation of a fluorescent ligand for VMAT2 suitable for live cell imaging. Staining for VMAT2 and dopamine in live β-cell cultures show colocalisation in specific vesicles and reveal a heterogeneous population with respect to cell size, shape, vesicle number, size, and contents. Staining for VMAT2 and zinc ion, as a surrogate for insulin, reveals a wide range of vesicle sizes. Immunohistochemistry shows larger β-cell vesicles enriched for proinsulin, whereas smaller vesicles predominantly contain the processed mature insulin. In β-cell cultures obtained from nondiabetic donors, incubation at non-stimulatory glucose concentrations promotes a shift in vesicle diameter towards the more mature insulin vesicles at the expense of the larger immature insulin secretory vesicle population. We anticipate that this probe will be a useful reagent to identify living β-cells within complex mixtures for further manipulation and characterisation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6443945 | PMC |
http://dx.doi.org/10.1038/s41598-019-41891-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!