The congenital disorders of glycosylation (CDG) are inborn errors of metabolism with a great genetic heterogeneity. Most CDG are caused by defects in the N-glycan biosynthesis, leading to multisystem phenotypes. However, the occurrence of tissue-restricted clinical symptoms in the various defects in dolichol-phosphate-mannose (DPM) synthesis remains unexplained. To deepen our understanding of the tissue-specific characteristics of defects in the DPM synthesis pathway, we investigated N-glycosylation and O-mannosylation in skeletal muscle of three DPM3-CDG patients presenting with muscle dystrophy and hypo-N-glycosylation of serum transferrin in only two of them. In the three patients, O-mannosylation of alpha-dystroglycan (αDG) was strongly reduced and western blot analysis of beta-dystroglycan (βDG) N-glycosylation revealed a consistent lack of one N-glycan in skeletal muscle. Recently, defective N-glycosylation of βDG has been reported in patients with mutations in guanosine-diphosphate-mannose pyrophosphorylase B (GMPPB). Thus, we suggest that aberrant O-glycosylation of αDG and N-glycosylation of βDG in skeletal muscle is indicative of a defect in the DPM synthesis pathway. Further studies should address to what extent hypo-N-glycosylation of βDG or other skeletal muscle proteins contribute to the phenotype of patients with defects in DPM synthesis. Our findings contribute to our understanding of the tissue-restricted phenotype of DPM3-CDG and other defects in the DPM synthesis pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jimd.12095DOI Listing

Publication Analysis

Top Keywords

dpm synthesis
20
skeletal muscle
16
defects dpm
12
synthesis pathway
12
understanding tissue-specific
8
n-glycosylation βdg
8
βdg skeletal
8
synthesis
6
defects
5
dpm
5

Similar Publications

Objective: The development of deep learning models for electroencephalography (EEG) signal processing is often constrained by the limited availability of high-quality data. Data augmentation techniques are among the solutions to overcome these challenges, and deep neural generative models, with their data synthesis capabilities, are potential candidates.

Approach: The current work investigates enhanced diffusion probabilistic models (DPM) and sampling methods for brain signal generation and data augmentation.

View Article and Find Full Text PDF
Article Synopsis
  • This study explores the effectiveness and safety of a new nano-drug delivery system using mesoporous silica to deliver gemcitabine (GEM) for pancreatic cancer treatment.
  • Conducted at Wenzhou Central Hospital from July 2022 to November 2023, the research involved creating and testing nanoparticles for their structure, drug loading capacity, release rates, and effects on cancer cells.
  • Results showed the nanoparticles effectively targeted pancreatic cancer cells, demonstrating promising drug delivery characteristics and cytotoxic effects, suggesting their potential as a novel treatment option.
View Article and Find Full Text PDF

Background/objectives: Diesel Particulate Matter (DPM) is a very small particulate matter originating from cities, factories, and the use of fossil fuels in diesel vehicles. When DPM permeates the skin, it causes inflammation, leading to severe atopic dermatitis. L.

View Article and Find Full Text PDF

Physicochemical and biological evaluation of 'click' synthesized vinyl epoxide-chitosan film for active food packaging.

Int J Biol Macromol

December 2024

Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India. Electronic address:

Chitosan (Cs) being a natural biopolymer serves as an excellent template to construct active packaging materials for achieving sustainable development. In this study, Cs was chemically modified via epoxide ring opening click reaction using vinyl epoxide to obtain a novel chitosan vinyl epoxide (Cs-VE) derivative with hydroxyl and olefinic functional groups. The Cs-VE transparent film was fabricated through the eco-friendly solution casting technique.

View Article and Find Full Text PDF

A method of choice to study the spatio-temporal dynamics of bacterial cell growth and division is to analyze the localization of cell wall synthesis regions by fluorescence microscopy. For this, nascent cell wall biopolymers need to be labeled with fluorescent reporters, like fluorescent d-alanines (FDAs) that can be incorporated into the peptidoglycan. To achieve high spatial and temporal resolution, dense, high-intensity fluorescence labeling must be obtained in the shortest possible time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!