A model able to a priori predict ion conductivities of ionic liquids (ILs) is a desired design tool. We here propose a set of simple conductivity models for ILs composed of small ions by only using data easily derived from standard DFT calculations as input; ion volume, ion mass, ion moment of inertia, and the ion-ion interaction strength. Hence these simple models are totally without any need for experimental parametrization. All model are made from fits of 22 ILs based on 12 different cations and 5 different anions, resulting in correlations vs. experiment of ≈0.95 and MAE of 25-36%. Given their (very) simple layout and how fast they can be applied (and re-used), the models allow for ample screening of new IL designs, while not aimed for perfect predictions .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6423347PMC
http://dx.doi.org/10.3389/fchem.2019.00126DOI Listing

Publication Analysis

Top Keywords

ionic liquids
8
predict ion
8
ion
5
simple
4
liquids simple
4
simple model
4
model predict
4
ion conductivity
4
conductivity based
4
based dft
4

Similar Publications

Understanding the interplay between the molecular structure of the ionic liquid (IL) subunit, the resulting nanostructure and ion transport in polymerized ionic liquids (PILs) is necessary for the realization of high-performance solid-state electrolytes required in various advanced applications. Herein, we present a detailed structural characterization of a recently synthesized series of acrylate-based PIL homopolymers and networks with imidazolium cations and chloride anions with varying alkyl spacer and terminal group lengths designed for organic solid-state batteries based on X-ray scattering. The impact of the concentrations of both the crosslinker and added tetrabutylammonium chloride (TBACl) conducting salt on the structural characteristics is also investigated.

View Article and Find Full Text PDF

Designing dicationic organic salts and ionic liquids exhibiting high fluorescence in the solid state.

J Ion Liq

December 2024

Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Box 454003, Las Vegas, NV 89154, United States.

Dicationic ionic liquids (DILs) are emerging as a powerful, next-generation approach to designing applied ILs because of their superior physicochemical properties as well as their diverse complexity and tunability for task specific applications. DILs are scarce in the literature compared to monocationic ILs (MILs), and one of their main issues is their expected tendency to possess higher melting temperatures. A series of 1,4-bis[2-(4-pyridyl)ethenyl] benzene and 1,4-bis[2-(2-pyridyl)ethenyl]benzene quaternary salts (Q-BPEBs) with different counterions (bromide, tosylate, and triflimide) and carbon chain lengths (C, C, and C) have been synthesized for their potential as DILs with strong photoluminescent properties in the solid state.

View Article and Find Full Text PDF

This study focuses on two types of phosphonium cation-based ionic liquids (P-ILs) with different alkyl chains: triethylalkylphosphonium (P222R) and tributylalkylphosphonium (P444R) cations. Broadband dielectric spectroscopy showed that the translational motion of the ions accelerated with an increasing number of alkyl chains by coupling with their rotational motion in both P-ILs. Raman spectroscopy revealed that P222R cations, despite dielectric similarities to P444R cations, can form all-trans conformations and cation-rich nanodomains because they have a relatively polar, short alkyl chain moiety with a central P atom and less-polar alkyl chains than those of P444R cations.

View Article and Find Full Text PDF

This study investigated the occurrence of perfluoroalkyl and polyfluoroalkyl substances (PFAS), including anionic, cationic, and zwitterionic compounds, in drinking water. Between 2021-2023, an expanded list of 76 target PFAS was screened in tap water samples mainly from Canada, but also including tap water samples from the Eastern United States, Mexico, South America (Argentina), the Caribbean (Dominican Republic, Cuba), Africa (Algeria, Cameroon, Central African Republic, Morocco, Rwanda, Tunisia), Europe (France, Greece, Italy, Spain, and the United Kingdom) and Asia (Japan, Vietnam, Iran, and Türkiye). An additional ∼ 200 suspect-target PFAS were screened using high-resolution Orbitrap mass spectrometry.

View Article and Find Full Text PDF

Sigal peptides have garnered remarkable efficacy in rejuvenating photoaged skin and delaying senescence. Nevertheless, their low solubility and poor permeability bring about a formidable challenge in their transdermal delivery. To address this challenge, bioactive ionic liquids (ILs) synthesized from natural glycyrrhizic acid (GA) and oxymatrine (OMT) with eminent biocompatibility is first prepared.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!