We demonstrate an ultrasonication-assisted synthesis without polar solvent of CsPbBr and CsPbBr perovskite nanocrystals (PNCs) and their reversible transformation. The as-prepared CsPbBr PNCs and CsPbBr PNCs exhibit different optical properties that depend on their morphology, size, and structure. The photoluminescence (PL) emission and quantum yield (QY) of the CsPbBr PNCs can be tuned by changing the ultrasound power, radiation time, and the height of the vibrating spear. The optimized CsPbBr PNCs show a good stability and high PL QY of up to 85%. In addition, the phase transformation between CsPbBr PNCs and CsPbBr PNCs can be obtained through varying the amount of oleylamine (OAm) and water. The mechanism of this transformation between the CsPbBr PNCs and CsPbBr PNCs and their morphology change are studied, involving ions equilibrium, anisotropic growth kinetics, and CsBr-stripping process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6423595 | PMC |
http://dx.doi.org/10.3762/bjnano.10.66 | DOI Listing |
Mikrochim Acta
December 2024
Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products/Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Colleges Universities Key Laboratory of Optic-Electric Chemo/Biosensing and Molecular Recognition, Guangxi Minzu University, Nanning, 530006, China.
A dual supersaturation recrystallization method was employed to synthesize water-stable, highly sensitive cesium-lead halide perovskite nanocrystals (CsPbBr PNCs). The PNCs exhibited excellent water stability, a significant photoluminescence quantum efficiency of 83.03%, along with a narrow full width at half maximum (FWHM) of 20 nm.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha 752050, India.
Single-particle photoluminescence measurements have been extensively utilized to investigate the charge carrier dynamics in quantum dots (QDs). Among these techniques, single dot blinking studies are effective for probing relatively slower processes with timescales >10 ms, whereas fluorescence correlation spectroscopy (FCS) studies are suited for recording faster processes with timescales typically <1 ms. In this study, we utilized scanning FCS (sFCS) to bridge the ms gap, thereby enabling the tracking of carrier dynamics across an extended temporal window ranging from μs to subsecond.
View Article and Find Full Text PDFThe in-situ generation of perovskite nanocrystals within organic media using a femtosecond laser can greatly simplify the sample preparation process and save pulse energy. In this work, three perovskite nanocrystals (PNCs), CsPbCl, CsPbBrCl, and CsCdxPbBr, were generated in situ within organic media using a femtosecond laser. These three perovskite nanocrystals emitted pure blue or blue-green fluorescence under ultraviolet (UV) irradiation.
View Article and Find Full Text PDFJ Phys Chem Lett
November 2024
Department of Photonics and Nanoelectronics, Hanyang University ERICA, Ansan 15588, Korea.
In this study, we investigate the atomic layer deposition (ALD) process on all-inorganic CsPbBr perovskite nanocrystals (PNCs) to introduce an inorganic electron transport layer (ETL) in light-emitting diode (LED) devices. Two types of CsPbBr PNCs were synthesized with oleate (OA) and oleylammonium (OLA) ligands on the surface. We found that CsPbBr PNCs with Cs oleate surfaces experienced severe photoluminescence (PL) quenching after the ALD process, while those with oleylammonium bromide surfaces did not show any significant PL drop.
View Article and Find Full Text PDFNano Lett
October 2024
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!