Chronic obstructive pulmonary disease (COPD) is now the fourth-leading cause of death worldwide and its prevalence is increasing. The progressive decline of lung function and airway remodelling are a consequence of chronic inflammatory responses. It was recently postulated the involvement of the inflammasome in COPD, although the underlying mechanism/s still need to be elucidated. Therefore, we isolated peripheral blood mononuclear cells (PBMCs) from exacerbated/unstable COPD patients. The stimulation of PBMCs with an AIM2 inflammasome activator, Poly dA:dT, led to IL-1α, but not IL-1β, release. The release of this cytokine was caspase-1- and caspase-4-dependent and correlated to higher levels of 8-OH-dG in COPD compared to non-smoker and smoker-derived PBMCs. Interestingly, AIM2-depedent IL-1α release was responsible for higher TGF-β levels, crucial mediator during pro-fibrotic processes associated to COPD progression. In conclusion, our data highlight the involvement of AIM2/caspase-1/caspase-4 in IL-1α-induced TGF-β release in unstable COPD-derived PBMCs, opening new therapeutic perspectives for unstable COPD patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428726PMC
http://dx.doi.org/10.3389/fphar.2019.00257DOI Listing

Publication Analysis

Top Keywords

aim2 inflammasome
8
tgf-β release
8
chronic obstructive
8
obstructive pulmonary
8
peripheral blood
8
blood mononuclear
8
mononuclear cells
8
copd patients
8
copd
6
release
5

Similar Publications

Litomosoides sigmodontis microfilariae-induced eosinophil ETosis is dependent on the canonical inflammasome pathway.

Cell Rep

January 2025

Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany.

Granulocytes exert several effector mechanisms, including the release of DNA traps during ETosis. While bacteria-induced ETosis has been linked to the non-canonical inflammasome pathway, the role of the inflammasome activation during ETosis in response to extracellular pathogens has not been investigated. The current study demonstrates that microfilariae (MF) of the rodent filarial nematode Litomosoides sigmodontis induce eosinophil ETosis via the canonical inflammasome pathway.

View Article and Find Full Text PDF

The Role of AIM2 in Cancer Development: Inflammasomes and Beyond.

J Cancer

January 2025

Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, China.

Absence in melanoma 2 (AIM2) protein functions as a double-stranded DNA sensor and is critical for host defense against intracellular bacterial and viral pathogens. Recent research has highlighted the significance of AIM2 in the pathogenesis of diverse malignancies. Through its recognition of foreign or intracellular dsDNA, AIM2 triggers inflammasome activation, resulting in the release of pro-inflammatory cytokines such as IL-1β, IL-18, and induction of pyroptosis.

View Article and Find Full Text PDF

Inflammasomes and idiopathic inflammatory myopathies.

Front Immunol

December 2024

Department of Rheumatology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China.

Idiopathic inflammatory myopathies (IIM) are a group of systemic autoimmune diseases characterized by muscle weakness and elevated serum creatine kinase levels. Recent research has highlighted the role of the innate immune system, particularly inflammasomes, in the pathogenesis of IIM. This review focuses on the role of inflammasomes, specifically NLRP3 and AIM2, and their associated proteins in the development of IIM.

View Article and Find Full Text PDF

Background: To address knowledge gaps, this study aimed to investigate the involvement of inflammasomes in the etiology of azoospermia. This study focused on the gene expression of key inflammasome components, including , and .

Methods: We analyzed gene expression in blood and testicular tissue from patients with obstructive azoospermia (OA) and non-obstructive azoospermia (NOA).

View Article and Find Full Text PDF
Article Synopsis
  • - The study explores the potential of chlorquinaldol (CQ), an antimicrobial agent, as a specific inhibitor of the NLRP3 inflammasome, which is linked to various inflammatory diseases, highlighting its promise for drug repurposing.
  • - CQ effectively suppresses NLRP3 inflammasome activation in both mouse and human macrophages primarily by blocking the interaction between NLRP3 and ASC, while having minimal impact on other inflammasomes like NLRC4 and AIM2.
  • - In vivo tests showed that CQ significantly improves conditions in mouse models of LPS-induced peritonitis, DSS-induced colitis, and MSU-induced gouty arthritis, suggesting its therapeutic potential for treating NLRP3-related
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!