Supervised Brain Tumor Segmentation Based on Gradient and Context-Sensitive Features.

Front Neurosci

School of Computer Software, College of Intelligence and Computing, Tianjin University, Tianjin, China.

Published: March 2019

Gliomas have the highest mortality rate and prevalence among the primary brain tumors. In this study, we proposed a supervised brain tumor segmentation method which detects diverse tumoral structures of both high grade gliomas and low grade gliomas in magnetic resonance imaging (MRI) images based on two types of features, the gradient features and the context-sensitive features. Two-dimensional gradient and three-dimensional gradient information was fully utilized to capture the gradient change. Furthermore, we proposed a circular context-sensitive feature which captures context information effectively. These features, totally 62, were compressed and optimized based on an mRMR algorithm, and random forest was used to classify voxels based on the compact feature set. To overcome the class-imbalanced problem of MRI data, our model was trained on a class-balanced region of interest dataset. We evaluated the proposed method based on the 2015 Brain Tumor Segmentation Challenge database, and the experimental results show a competitive performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427904PMC
http://dx.doi.org/10.3389/fnins.2019.00144DOI Listing

Publication Analysis

Top Keywords

brain tumor
12
tumor segmentation
12
supervised brain
8
context-sensitive features
8
grade gliomas
8
based
5
gradient
5
features
5
segmentation based
4
based gradient
4

Similar Publications

Background And Purpose: Synthetic MRI utilizes the quantitative relaxometry parameters to generate multiple contrast images through a single acquisition. We tried to explore the utility of synthetic MRI derived relaxometry parameters in evaluation of ring enhancing lesions of brain.

Materials And Methods: This was a prospective study.

View Article and Find Full Text PDF

Development and validation of a radiomics nomogram for preoperative prediction of BRAF mutation status in adult patients with craniopharyngioma.

Neurosurg Rev

December 2024

Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Beijing, 100070, China.

Although craniopharyngiomas are rare benign brain tumors primarily managed by surgery, they are often burdened by a poor prognosis due to tumor recurrence and long-term morbidity. In recent years, BRAF-targeted therapy has been promising, showing potential as an adjuvant or neoadjuvant approach. Therefore, we aim to develop and validate a radiomics nomogram for preoperative prediction of BRAF mutation in craniopharyngiomas.

View Article and Find Full Text PDF

Intracranial hemorrhage associated with primary or metastatic brain tumors is a critical condition that requires urgent intervention, often through open surgery. Nevertheless, surgical interventions may not always be feasible due to two main reasons: (1) extensive hemorrhage can obscure the underlying tumor mass, limiting radiological assessment; and (2) intracranial hemorrhage may occasionally present as the first symptom of a brain tumor without prior knowledge of its existence. The current review of case studies suggests that advanced radiological imaging techniques can improve diagnostic power for tumoral hemorrhage.

View Article and Find Full Text PDF

This study addresses issues in developing spatially controlled magnetic fields for particle guidance, synthesizing biocompatible and chemically stable MNPs and enhancing their specificity to pathological cells through chemical modifications, developing personalized adjustments, and highlighting the potential of tumor-on-a-chip systems, which can simulate tissue environments and assess drug efficacy and dosage in a controlled setting. The research focused on two MNP types, uncoated magnetite nanoparticles (mMNPs) and carboxymethyl dextran coated superparamagnetic nanoparticles (CD-SPIONs), and evaluated their transport properties in microfluidic systems and porous media. The original uncoated mMNPs of bimodal size distribution and the narrow size distribution of the fractions (23 nm and 106 nm by radii) were demonstrated to agglomerate in magnetically driven microfluidic flow, forming a stable stationary web consisting of magnetic fibers within 30 min.

View Article and Find Full Text PDF

The human digestive system contains approximately 100 trillion bacteria. The gut microbiota is an emerging field of research that is associated with specific biological processes in many diseases, including cardiovascular disease, obesity, diabetes, brain disease, rheumatoid arthritis, and cancer. Emerging evidence indicates that the gut microbiota affects the response to anticancer therapies by modulating the host immune system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!