Abstract: Collective behaviour of animals has been a main focus of recent research, yet few empirical studies deal with this issue in the context of predation, a major driver of social complexity in many animal species. When starling () flocks are under attack by a raptor, such as a peregrine falcon (), they show a great diversity of patterns of collective escape. The corresponding structural complexity concerns rapid variation in density and shape of the flock over time. Here, we present a first step towards unravelling this complexity. We apply a time series analysis to video footage of 182 sequences of hunting by falcons on flocks of thousands of starlings close to two urban roosts during winter. We distinguish several types of collective escape by determining the position and movement of individuals relative to each other (which determines darkness and shape of the flock over time) as well as relative to the predator, namely 'flash expansion', 'blackening', 'wave event', 'vacuole', 'cordon' and 'split'. We show that the specific type of collective escape depends on the collective pattern that precedes it and on the level of threat posed by the raptor. A wave event was most likely to occur when the predator attacked at medium speed. Flash expansion occurred more frequently when the predator approached the flock at faster rather than slower speed and attacked from above rather than from the side or below. Flash expansion was often followed by split, but in many cases, the flock showed resilience by remaining intact. During a hunting sequence, the frequencies of different patterns of collective escape increased when the frequency of attack by the raptor was higher. Despite their complexity, we show that patterns of collective escape depend on the predatory threat, which resembles findings in fish.
Significance Statement: Patterns of collective escape in flocks of starlings have always intrigued laymen and scientists. A detailed analysis of their complex dynamics has been lacking so far, and is the focus of our present study: we analysed video footage of hunting by falcons on flocks of thousands of starlings and show how patterns of collective escape (namely flash expansion, blackening, wave event, vacuole, cordon and split) depend on the preceding pattern and on details of attack. A higher frequency of attack during a hunting sequence resulted in a higher frequency of collective escape events. Flash expansion happened most often when the predator attacks at greater speed. A wave event was most likely when the raptor attacks at medium (rather than high or low) speed. These results provide a first quantitative approach to social complexity in collective avoidance of a predator.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6404399 | PMC |
http://dx.doi.org/10.1007/s00265-018-2609-0 | DOI Listing |
J Fish Biol
January 2025
Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS) & Université de Toulouse (UPS), Toulouse, France.
Escape waves in animal groups, such as bird flocks and fish schools, have attracted a lot of attention, as they provide the opportunity to better understand how information can efficiently propagate in moving groups, and how individuals can coordinate their actions under the threat of predators. There is a lack of appropriate experimental protocols to study escape waves in highly social fish, in which the number of individuals initiating the escape and the identity of the initiators are controlled. Indeed, highly social fish or obligate schoolers have a tendency to not respond well or to freeze when tested in experimental setups designed for single individuals.
View Article and Find Full Text PDFJ Public Health Policy
December 2024
Department of Internal Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
J Biomol Struct Dyn
December 2024
Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad, India.
Influenza A (H1N1) virus has been one of the most common threats to humankind since 1918. The viral genome is frequently substituted, leading to new strains and recurrent pandemics. Despite knowing the effects of single amino acid substitutions on individual viral proteins, the effects of collective substitutions on viral infection remain elusive.
View Article and Find Full Text PDFCommun Biol
November 2024
Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany.
The collective dynamics of self-organised systems emerge from the decision rules agents use to respond to each other and to external forces. This is evident in groups of animals under attack from predators, where understanding collective escape patterns requires evaluating the risks and rewards associated with particular social rules, prey escape behaviour, and predator attack strategies. Here, we find that the emergence of the 'fountain effect', a common collective pattern observed when animal groups evade predators, is the outcome of rules designed to maximise individual survival chances given predator hunting decisions.
View Article and Find Full Text PDFSci Rep
November 2024
Information and Electronic Engineering, Shandong Technology and Business University, Yantai, 264005, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!