Neuroprotective role of kolaviron in striatal redo-inflammation associated with rotenone model of Parkinson's disease.

Neurotoxicology

Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.

Published: July 2019

Parkinson's disease is the most prevalent movement disorder. Currently, therapies are palliative with associated irreversible behavioural incompetence. Here, we investigated the ability of kolaviron (KV), an anti-inflammatory biflavonoid isolated form Garcinia kola seeds, to rescue striatal neuronal damage and redo-inflammation in rats exposed to rotenone (ROT). Aged rats exposed to 11 days of rotenone intoxication were treated with KV either concurrently or for 18 days. The 18-day regimen included 7 days of pre-treatment prior 11-day concurrent ROT-KV treatment. Rotenone-exposed rats lost weight appreciably and travelled less distance with reduced speed, decline efficiency to maintain a straight path, enhanced freezing, increased immobile episodes and poor hole recognition. The motor incompetence was attributed to enhanced striatal neurodegeneration, increased alpha synuclein formation and reduced tyrosine hydroxylase expression. ROT intoxication significantly increased reactive species production, which co-existed with induction of striatal antioxidant system and damage to biomolecules. ROT additionally upregulated COX-2 expression, enhanced myeloperoxidase activity and increased concentration of striatal inteleukine-6 (IL-6), IL-1β and tumour necrosis factor (TNF-α). Treatment with kolaviron reversed the rotenone-associated locomotor impairment and exploratory deficits, motor/neuromuscular incompetence, striatal neurodegeneration, neurobiochemical imbalance, altered antioxidant defence system and neuroinflammation. KV-treated rats showed improved capacity to maintain efficient gait with minimal rigidity and enhanced coordination. Taken together, kolaviron exhibited neuroprotective properties, which may be beneficial for the prevention and management of Parkinson's disease, via antioxidant, anti-inflammatory and anti-apoptotic mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuro.2019.03.005DOI Listing

Publication Analysis

Top Keywords

parkinson's disease
12
rats exposed
8
striatal neurodegeneration
8
striatal
6
neuroprotective role
4
kolaviron
4
role kolaviron
4
kolaviron striatal
4
striatal redo-inflammation
4
redo-inflammation associated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!