Inflammatory bowel disease (IBD) is characterized by chronic, recurring inflammation of the digestive tract. Current therapeutic approaches are limited and include biologics and steroids such as anti-TNFα monoclonal antibodies and corticosteroids, respectively. Significant adverse drug effects can occur for chronic usage and include increased risk of infection in some patients. GPR4, a pH-sensing G protein-coupled receptor, has recently emerged as a potential therapeutic target for intestinal inflammation. We have assessed the effects of a GPR4 antagonist, 2-(4-((2-Ethyl-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)methyl)phenyl)-5-(piperidin-4-yl)-1,3,4-oxadiazole (GPR4 antagonist 13, also known as NE-52-QQ57) in the dextran sulfate sodium (DSS)-induced acute colitis mouse model. The GPR4 antagonist 13 inhibited intestinal inflammation. The clinical parameters such as body weight loss and fecal score were reduced in the GPR4 antagonist 13 treatment group compared to vehicle control. Macroscopic disease indicators such as colon shortening, splenic expansion, and mesenteric lymph node enlargement were all reduced in severity in the GPR4 antagonist 13 treated mice. Histopathological features of active colitis were alleviated in GPR4 antagonist 13 treatment groups compared to vehicle control. Finally, inflammatory gene expression in the colon tissues and vascular adhesion molecule expression in the intestinal endothelia were attenuated by GPR4 antagonist 13. Our results indicate that GPR4 antagonist 13 provides a protective effect in the DSS-induced acute colitis mouse model, and inhibition of GPR4 can be explored as a novel anti-inflammatory approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6526936 | PMC |
http://dx.doi.org/10.1016/j.ejphar.2019.03.038 | DOI Listing |
Free Radic Biol Med
November 2024
Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA; Department of Anesthesiology and Neurology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA. Electronic address:
Background And Purpose: Subarachnoid hemorrhage (SAH) is a devastating stroke, in which acidosis is one of detrimental complications. The extracellular pH reduction can activate G protein-coupled receptor 4 (GPR4) in the brain. Yet, the extent to which proton-activated GPR4 contributes to the early brain injury (EBI) post-SAH remains largely unexplored.
View Article and Find Full Text PDFGenes (Basel)
September 2024
Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
Cancer Sci
May 2024
Department of Pathology, School of Medicine, Wakayama Medical University, Wakayama, Japan.
Cancer tissues exhibit an acidic microenvironment owing to the accumulation of protons and lactic acid produced by cancer and inflammatory cells. To examine the role of an acidic microenvironment in lymphatic cancer metastasis, gene expression profiling was conducted using human dermal lymphatic endothelial cells (HDLECs) treated with a low pH medium. Microarray and gene set enrichment analysis revealed that acid treatment induced the expression of inflammation-related genes in HDLECs, including genes encoding chemokines and adhesion molecules.
View Article and Find Full Text PDFBrain
April 2024
State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.
Arteriovenous malformations (AVMs) are fast-flow vascular malformations and refer to important causes of intracerebral haemorrhage in young adults. Getting deep insight into the genetic pathogenesis of AVMs is necessary. Herein, we identified two vital missense variants of G protein-coupled receptor (GPCR) associated sorting protein 1 (GPRASP1) in AVM patients for the first time and congruously determined to be loss-of-function variants in endothelial cells.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
July 2023
Departments of Chemistry (J.S.); Computer-Aided Drug Discovery (A.Y.S.); Gastroenterology (R.P., B.C.F.); Molecular and Cellular Pharmacology-Target Validation and Functional Genomics (J.R., M.-L.R.); In Vivo Pharmacology (G.I.); DMPK (P.H.); Computational Biology (Y.Y., J.Y., C.B.), Ferring Research Institute Inc., San Diego, California; and Biosensing Instrument, Tempe, Arizona (S.W., A.U.)
Inflammatory bowel disease (IBD) is characterized by chronic mucosal inflammation of the gastrointestinal tract and is associated with extracellular acidification of mucosal tissue. Several extracellular pH-sensing receptors, including G protein-coupled receptor 4 (GPR4), play an important role in the regulation of inflammatory and immune responses, and GPR4 deficiency has been shown to be protective in IBD animal models. To confirm the therapeutic potential of GPR4 antagonism in IBD, we tested Compound 13, a selective GPR4 antagonist, in the interleukin 10-/- mouse model of colitis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!