Advances in electron cryo-microscopy (cryo-EM) now permit the structure determination of G protein-coupled receptors (GPCRs) coupled to heterotrimeric G proteins by single-particle imaging. A combination of G protein engineering and the development of antibodies that stabilise the heterotrimeric G protein facilitate the formation of stable GPCR-G protein complexes suitable for structural biology. Structures have been determined of GPCRs coupled to either heterotrimeric G proteins (G, G or G) or mini-G proteins (mini-G or mini-G) by single-particle cryo-EM and X-ray crystallography, respectively. This review describes the technical breakthroughs allowing their structure determination and compares the different techniques. In addition, we compare the structures of GPCRs coupled either to G, G or G and analyse the contributions of amino acid residues to the GPCR-G protein interface. There is no unique set of interactions that specifies coupling either to G, G or G. Instead, there is a common core of interactions between the C-terminal α-helix of the G protein α-subunit and helices H3, H5 and H6 of the receptor. In addition, there are varying degrees of interaction between all the other GPCR helices and intracellular loops to five regions of the α-subunit and four regions of the β-subunit. These data support the contention that there is not a simple linear barcode that defines the specificity of G protein coupling and thus how a G protein couples to a GPCR cannot currently be determined from simply analysing amino acid sequences. Although the overall architecture of GPCR-G protein complexes is conserved, there are significant differences in the molecular details. The number and type of molecular interactions between amino acid residues at the interfaces varies, resulting in subtly different orientation and position of the G protein with respect to the GPCR. This in turn affects the interface surface area that varies between 845 Å and 1490 Å, which could impact upon the lifetime of signalling complexes in the cell.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mce.2019.02.006 | DOI Listing |
Phytomedicine
January 2025
Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China. Electronic address:
Background: Shenghui Decoction (SHD) is a frequently utilized traditional Chinese medicine formula in clinical settings for addressing cognitive impairment in elderly individuals. Nevertheless, the precise mechanism by which SHD exerts its effects on the most prevalent form of dementia, Alzheimer's disease (AD), remains to be elucidated.
Methods: Temperature-induced transgenic C.
Nat Chem Biol
January 2025
The Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.
Opioid receptors, a subfamily of G protein-coupled receptors (GPCRs), are key therapeutic targets. In the canonical GPCR activation model, agonist binding is required for receptor-G protein complex formation, while antagonists prevent G protein coupling. However, many GPCRs exhibit basal activity, allowing G protein association without an agonist.
View Article and Find Full Text PDFInsects
November 2024
Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China.
Neuropeptide (abbreviated as ) is a recently discovered peptide that is present in many arthropods and is the ligand of the , a member of the G protein-coupled receptors (GPCRs) superfamily, which plays a regulatory role in diverse physiological processes such as feeding, circadian rhythm, insulin production, lipid metabolism, growth, and reproduction. However, the function of this gene in aphids is still unknown. Here, we characterized and determined the potential role of / signaling in the pea aphid, , which is a notorious pest in agriculture.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Pharmacology and Therapeutic Innovation, School of Pharmaceutical Sciences, Nagasaki University, Nagasaki 852-8521, Japan.
The receptor transporter protein 4 (RTP4) is a receptor chaperone protein that targets class A G-protein coupled receptor (GPCR)s. Recently, it has been found to play a role in peripheral inflammatory regulation, as one of the interferon-stimulated genes (ISGs). However, the detailed role of RTP4 in response to inflammatory stress in the central nervous system has not yet been fully understood.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia.
G-protein-coupled receptors (GPCRs) have emerged as critical regulators of bone development and remodeling. In this study, we aimed to identify specific GPCR mutations in osteoporotic patients via next-generation sequencing (NGS). We performed NGS sequencing of six genomic DNA samples taken from osteoporotic patients and two genomic DNA samples from healthy donors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!