Magnetic resonance imaging allows acquiring functional and structural connectivity data from which high-density whole-brain networks can be derived to carry out connectome-wide analyses in normal and clinical populations. Graph theory has been widely applied to investigate the modular structure of brain connections by using centrality measures to identify the "hub" of human connectomes, and community detection methods to delineate subnetworks associated with diverse cognitive and sensorimotor functions. These analyses typically rely on a preprocessing step (pruning) to reduce computational complexity and remove the weakest edges that are most likely affected by experimental noise. However, weak links may contain relevant information about brain connectivity, therefore, the identification of the optimal trade-off between retained and discarded edges is a subject of active research. We introduce a pruning algorithm to identify edges that carry the highest information content. The algorithm selects both strong edges (i.e. edges belonging to shortest paths) and weak edges that are topologically relevant in weakly connected subnetworks. The newly developed "strong-weak" pruning (SWP) algorithm was validated on simulated networks that mimic the structure of human brain networks. It was then applied for the analysis of a real dataset of subjects affected by amyotrophic lateral sclerosis (ALS), both at the early (ALS2) and late (ALS3) stage of the disease, and of healthy control subjects. SWP preprocessing allowed identifying statistically significant differences in the path length of networks between patients and healthy subjects. ALS patients showed a decrease of connectivity between frontal cortex to temporal cortex and parietal cortex and between temporal and occipital cortex. Moreover, degree of centrality measures revealed significantly different hub and centrality scores between patient subgroups. These findings suggest a widespread alteration of network topology in ALS associated with disease progression.

Download full-text PDF

Source
http://dx.doi.org/10.1142/S0129065719500072DOI Listing

Publication Analysis

Top Keywords

amyotrophic lateral
8
lateral sclerosis
8
centrality measures
8
cortex temporal
8
edges
6
strong-weak pruning
4
brain
4
pruning brain
4
brain network
4
network identification
4

Similar Publications

Health Care Delivery and Financial Considerations in Amyotrophic Lateral Sclerosis Clinics: A Survey of Clinic Directors.

Neurology

February 2025

From the Temple University College of Public Health (I.L.H.); Thomas Jefferson University (G.G.); and Department of Neurology (T.D.H.-P.), Lewis Katz School of Medicine at Temple University, Philadelphia, PA.

Background And Objectives: Clinical care for people living with amyotrophic lateral sclerosis (PLWALS) is directed at slowing disease progression and symptom management. The American Academy of Neurology recommends a multidisciplinary approach to providing ALS health care because observational studies show that multidisciplinary clinics (MDCs) extend survival and improve quality of life. However, providing multidisciplinary care is a challenging financial proposition.

View Article and Find Full Text PDF

The Amyotrophic Lateral Sclerosis Multidisciplinary Clinic: Broke but Not Broken.

Neurology

February 2025

From the Department of Neurology (C.N.F.), Emory University, Atlanta, GA; and Department of Neurology (C.C.Q.), University of Pennsylvania, Philadelphia.

View Article and Find Full Text PDF

Clinical perspective on pluripotent stem cells derived cell therapies for the treatment of neurodegenerative diseases.

Adv Drug Deliv Rev

January 2025

Neurodegenerative Diseases Department, Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Ness-Ziona, Israel; Department of Molecular Genetics, Weizmann Institute of Science, 76100, Rehovot, Israel.

Self-renewal capacity and potential to differentiate into almost any cell type of the human body makes pluripotent stem cells a valuable starting material for manufacturing of clinical grade cell therapies. Neurodegenerative diseases are characterized by gradual loss of structure or function of neurons, often leading to neuronal death. This results in gradual decline of cognitive, motor, and physiological functions due to the degeneration of the central nervous systems.

View Article and Find Full Text PDF

Purpose: To investigate the differences in brain spontaneous neural activity between limb-onset and bulbar-onset amyotrophic lateral sclerosis (ALS-L and ALS-B, respectively) patients using resting-state functional MRI (rs-fMRI) with amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo).

Materials And Methods: The rs-fMRI data were collected from 41 ALS patients (11 ALS-B and 30 ALS-L) and 25 healthy controls (HC). ALFF and ReHo values were calculated, and group differences were assessed using one-way ANCOVA and two-sample t-tests.

View Article and Find Full Text PDF

Background: An inconsistent yet notable relationship between dietary habits and the risk of amyotrophic lateral sclerosis (ALS) has been previously established, with the causative nature of this relationship remaining uncertain. This study aims to explore the causal connections at a genetic level.

Methods: A two-sample Mendelian Randomization (MR) based analysis was conducted utilizing a comprehensive, publicly assessable Genome-wide association study (GWAS) database.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!