Long non-coding RNAs (lncRNAs) are regarded as a group of biomarkers in the initiation and development of various cancers, including hepatocellular carcinoma (HCC). LncRNA FOXD2-AS1 has been studied in human colorectal cancer and glioma as an oncogene. However, the function and mechanism of lncRNA FOXD2-AS1 in hepatocellular carcinoma are marked. In this study, we found that high expression of FOXD2-AS1 predicted poor prognosis of HCC patients in the TCGA database. The dysregulation of FOXD2-AS1 was determined in HCC tissues and cell lines by qRT-PCR. Functionally, silenced FOXD2-AS1 efficiently suppressed HCC progression by regulating cell proliferation, apoptosis, migration and epithelial-mesenchymal transition (EMT). Mechanistically, FOXD2-AS1 was found to be activated by the transcription factor EGR1. Furthermore, FOXD2-AS1 could activate the Wnt/β-catenin signaling pathway. The mechanism contributed to the interaction between FOXD2-AS1 and Wnt/β-catenin signaling pathway was analyzed. It was uncovered that FOXD2-AS1 enhanced the activity of Wnt/β-catenin signaling pathway by epigenetically silencing the inhibitor of Wnt/β-catenin signaling pathway (DKK1). Rescue assays demonstrated that DKK1 and Wnt/β-catenin signaling pathway involved in FOXD2-AS1-mediated HCC progression. In conclusion, our study demonstrated that EGR1-induced upregulation of lncRNA FOXD2-AS1 promotes the progression of hepatocellular carcinoma via epigenetically silencing DKK1 and activating Wnt/β-catenin signaling pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6606006PMC
http://dx.doi.org/10.1080/15384047.2019.1595276DOI Listing

Publication Analysis

Top Keywords

wnt/β-catenin signaling
28
signaling pathway
28
lncrna foxd2-as1
16
hepatocellular carcinoma
16
epigenetically silencing
12
foxd2-as1
11
egr1-induced upregulation
8
upregulation lncrna
8
foxd2-as1 promotes
8
promotes progression
8

Similar Publications

The bovine uterus is susceptible to bacterial infections after calving, particularly from (), which often results in endometritis. Additionally, postpartum stress in cows can elevate cortisol levels in the body, inhibiting endometrial regeneration and reducing immune function, thereby further increasing the risk of infection. Selenium (Se) is a common feed additive in dairy farming, known for its anti-inflammatory and antioxidant effects.

View Article and Find Full Text PDF

Wool quality is a crucial economic trait in Angora rabbits, closely linked to hair follicle (HF) growth and development. Therefore, understanding the molecular mechanisms of key genes regulating HF growth and wool fiber formation is essential. In the study, fine- and coarse-wool groups were identified based on HF morphological characteristics of Zhexi Angora rabbits.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is a chronic disorder characterized by kidney fibrosis and extracellular matrix accumulation that can lead to end-stage kidney disease. Epithelial-to-mesenchymal transition, inflammatory cytokines, the TGF-β pathway, Wnt/β-catenin signaling, the Notch pathway, and the NF-κB pathway all play crucial roles in the progression of fibrosis. Current medications, such as renin-angiotensin-aldosterone system inhibitors, try to delay disease development but do not stop or reverse fibrosis.

View Article and Find Full Text PDF

Clinical Potential of Misshapen/NIKs-Related Kinase (MINK) 1-A Many-Sided Element of Cell Physiology and Pathology.

Curr Issues Mol Biol

December 2024

Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland.

Misshapen/NIKs-related kinase (MINK) 1 belongs to the mammalian germinal center kinase (GCK) family. It contains the N-terminal, conserved kinase domain, a coiled-coil region, a proline-rich region, and a GCK, C-terminal domain with the Citron-NIK-Homology (CNH) domain. The kinase is an essential component of cellular signaling pathways, which include Wnt signaling, JNK signaling, pathways engaging Ras proteins, the Hippo pathway, and STRIPAK complexes.

View Article and Find Full Text PDF

Individuals with metabolic syndrome have a high risk of developing cardiovascular disorders that is closely tied to visceral adipose tissue dysfunction, as well as an altered interaction between adipose tissue and the cardiovascular system. In metabolic syndrome, adipose tissue dysfunction is associated with increased hypertrophy, reduced vascularization, and hypoxia of adipocytes, leading to a pro-oxidative and pro-inflammatory environment. Among the pathways regulating adipose tissue homeostasis is the wingless-type mammary tumor virus integration site family (Wnt) signaling pathway, with both its canonical and non-canonical arms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!