Lipid membranes accelerate amyloid formation in the mouse model of AA amyloidosis.

Amyloid

a Experimental Pathology, Department of Clinical and Experimental Medicine , Linköping University, Linköping , Sweden.

Published: March 2019

AI Article Synopsis

  • AA amyloidosis is linked to chronic inflammation and involves the buildup of serum amyloid A protein fragments, with macrophages playing a key role in this process.
  • In an experimental mouse model, the study examined how liposomes and an amyloid-enhancing factor affect amyloid formation, revealing that liposomes promote amyloid accumulation but are less effective than the amyloid-enhancing factor.
  • The findings indicate that higher levels of intracellular lipids contribute to the formation of AA amyloid fibrils, and the mouse model is valuable for gaining deeper insights into the underlying mechanisms.

Article Abstract

Introduction: AA amyloidosis develops as a result of prolonged inflammation and is characterized by deposits of N-terminal proteolytic fragments of the acute phase reactant serum amyloid A (SAA). Macrophages are usually found adjacent to amyloid, suggesting their involvement in the formation and/or degradation of the amyloid fibrils. Furthermore, accumulating evidence suggests that lipid membranes accelerate the fibrillation of different amyloid proteins.

Methods: Using an experimental mouse model of AA amyloidosis, we compared the amyloidogenic effect of liposomes and/or amyloid-enhancing factor (AEF). Inflammation was induced by subcutaneous injection of silver nitrate followed by intravenous injection of liposomes and/or AEF to accelerate amyloid formation.

Results: We showed that liposomes accelerate amyloid formation in inflamed mice, but the amyloidogenic effect of liposomes was weaker compared with AEF. Regardless of the induction method, amyloid deposits were mainly found in the marginal zones of the spleen and coincided with the depletion of marginal zone macrophages, while red pulp macrophages and metallophilic marginal zone macrophages proved insensitive to amyloid deposition.

Conclusions: We conclude that increased intracellular lipid content facilitates AA amyloid fibril formation and show that the mouse model of AA amyloidosis is a suitable system for further mechanistic studies.

Download full-text PDF

Source
http://dx.doi.org/10.1080/13506129.2019.1576606DOI Listing

Publication Analysis

Top Keywords

accelerate amyloid
12
mouse model
12
model amyloidosis
12
amyloid
10
lipid membranes
8
membranes accelerate
8
amyloid formation
8
formation mouse
8
amyloidogenic liposomes
8
liposomes and/or
8

Similar Publications

Cardiac amyloidosis represents a unique disease process characterized by amyloid fibril deposition within the myocardial extracellular space. Advances in multimodality cardiac imaging enable accurate diagnosis and facilitate prompt initiation of disease-modifying therapies. Furthermore, rapid advances in multimodality imaging have enriched understanding of the underlying pathogenesis, enhanced prognostication, and resulted in the development of imaging-based markers that reflect the amyloid burden, which is of increasing importance when assessing the response to treatment.

View Article and Find Full Text PDF

Background: A neuroinflammatory disease such as Alzheimer's disease, presents a significant challenge in neurotherapeutics, particularly due to the complex etiology and allostatic factors, referred to as CNS stressors, that accelerate the development and progression of the disease. These CNS stressors include cerebral hypo-glucose metabolism, hyperinsulinemia, mitochondrial dysfunction, oxidative stress, impairment of neuronal autophagy, hypoxic insults and neuroinflammation. This study aims to explore the efficacy and safety of DAG-MAG-ΒHB, a novel ketone diester, in mitigating these risk factors by sustaining therapeutic ketosis, independent of conventional metabolic pathways.

View Article and Find Full Text PDF

Three monoclonal antibodies directed against specific forms of the amyloid-β (Aβ) peptide have been granted accelerated or traditional approval by the FDA as treatments for Alzheimer disease, representing the first step towards bringing disease-modifying treatments for this disease into clinical practice. Here, we review the detection, underlying pathophysiological mechanisms and clinical implications of amyloid-related imaging abnormalities (ARIA), the most impactful adverse effect of anti-Aβ immunotherapy. ARIA appears as regions of oedema or effusions (ARIA-E) in brain parenchyma or sulci or as haemorrhagic lesions (ARIA-H) in the form of cerebral microbleeds, convexity subarachnoid haemorrhage, cortical superficial siderosis or intracerebral haemorrhage.

View Article and Find Full Text PDF

Cerebromicrovascular mechanisms contributing to long COVID: implications for neurocognitive health.

Geroscience

January 2025

Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.

Long COVID (also known as post-acute sequelae of SARS-CoV-2 infection [PASC] or post-COVID syndrome) is characterized by persistent symptoms that extend beyond the acute phase of SARS-CoV-2 infection, affecting approximately 10% to over 30% of those infected. It presents a significant clinical challenge, notably due to pronounced neurocognitive symptoms such as brain fog. The mechanisms underlying these effects are multifactorial, with mounting evidence pointing to a central role of cerebromicrovascular dysfunction.

View Article and Find Full Text PDF

Recent successes in the identification of biomarkers and therapeutic targets for diagnosing and managing neurological diseases underscore the critical need for cutting-edge biobanks in the conduct of high-caliber translational neuroscience research. Biobanks dedicated to neurological disorders are particularly timely, given the increasing prevalence of neurological disability among the rising aging population. Translational research focusing on disorders of the central nervous system (CNS) poses distinct challenges due to the limited accessibility of CNS tissue pre-mortem.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!