[Effects of artesunate combined with bortezomib on apoptosis and autophagy of acute myeloid leukemia cells and its mechanism].

Zhonghua Xue Ye Xue Za Zhi

Department of Hematology, Hematology Laboratory, Western China Hospital, Sichuan University, Chengdu 610041, China.

Published: March 2019

To investigate the effects of artesunate combined with bortezomib on the proliferation, apoptosis and autophagy of human acute myeloid leukemia cell lines MV4-11, and its mechanisms. MTT method was used to determine the anti-proliferation effect of different concentrations of artesunate, bortezomib and their combination on MV4-11 cells. The cell apoptosis were analyzed by flow cytometry. The expression of cleaved-Caspase-3, Bcl-2 family protein (Bcl-2, Mcl-1, Bim, Bax) and autophagy-related protein LC3B were assayed by Western blot. Artesunate displayed a proliferation inhibition effect on MV4-11 with dose- and time-dependent manner, the IC(50) of artesunate on MV4-11 after 48 hours was 1.44 μg/ml. Bortezomib displayed a proliferation inhibition effect on MV4-11 with dose-dependent manner, the IC(50) of bortezomib on MV4-11 after 48 hours was 8.97 nmol/L. The combination of artesunate (0.75, 1.0 μg/ml) and Bortezomib (6, 8 nmol/L) showed higher inhibition on MV4-11 than artesunate or bortezomib alone in the same concentration gradient after 48 hours (<0.05) . The cooperation index of the two drugs were all less than 1. The 48 h apoptotic rate of artesunate (1.5 μg/ml) on MV4-11 was (15.27±2.18) %, (19.85±3.23) % of bortezomib (8 nmol/L) , (81.67±5.96) % of combination of the two drugs, significantly higher than the single group (<0.05) . When combination of the two drugs on MV4-11 after 24 hours, the levels of pro-apoptotic protein Bim and the cleaved activation of Caspase-3 and autophagy-related protein LC3B were up-regulated and the anti-apoptotic protein Bcl-2 expressions was down-regulated. Combination of artesunate with bortezomib shows a significant synergistic effects on proliferation, apoptosis and autophagy of MV4-11 cell lines, which may be associated with Bcl-2 family proteins expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7342538PMC
http://dx.doi.org/10.3760/cma.j.issn.0253-2727.2019.03.008DOI Listing

Publication Analysis

Top Keywords

inhibition mv4-11
12
artesunate combined
8
combined bortezomib
8
apoptosis autophagy
8
acute myeloid
8
myeloid leukemia
8
artesunate bortezomib
8
displayed proliferation
8
proliferation inhibition
8
manner ic50
8

Similar Publications

Design, synthesis, and antitumor evaluation of triazolopyridine derivatives as novel inhibitors for BRD4.

Eur J Med Chem

January 2025

Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, PR China. Electronic address:

The bromodomain-containing protein 4 (BRD4) is an epigenetic regulatory 'reader' belonging to the bromodomain and extra-terminal domain (BET) family. Several studies have demonstrated that the high expression of BRD4 is closely related to the occurrence and development of various cancers, so BRD4 has become a promising target for cancer treatment. However, there are no drugs targeting BRD4 available on the market, the development of novel BRD4 inhibitors is of great significance.

View Article and Find Full Text PDF

Discovery of 3-amide-pyrimidine-based derivatives as potential fms-like tyrosine receptor kinase 3 (FLT3) inhibitors for treating acute myelogenous leukemia.

Bioorg Med Chem Lett

March 2025

Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China. Electronic address:

Article Synopsis
  • FLT3-ITD and TKD mutants are key drivers in acute myeloid leukemia (AML), making FLT3 a promising target for new treatments.
  • To identify next-generation FLT3 inhibitors, researchers modified G-749 and found that a derivative named MY-10 showed strong and selective inhibition against FLT3-ITD and FLT3-D835Y mutants.
  • MY-10 was effective in blocking cell cycle progression, inducing apoptosis, and reducing harmful reactive oxygen species, while not affecting c-KIT kinase, suggesting its potential as a targeted ACML therapy.
View Article and Find Full Text PDF

Targeting XPO1 inhibition has emerged as a promising therapeutic strategy in cancer treatment. Despite the numerous XPO1 inhibitors reported to date, no XPO1 degraders have been disclosed. In this study, we reported the design, synthesis and biological characterization of small-molecule XPO1 degraders based upon the proteolysis targeting chimera (PROTAC), marking the first public disclosure of XPO1 degraders.

View Article and Find Full Text PDF

Unlabelled: Hematological cancer treatment with hybrid kinase/HDAC inhibitors is a novel strategy to overcome the challenge of acquired resistance to drugs. We collected IC datasets from the ChEMBL database for 13 cancer cell lines (72 h cytotoxicity, measured by MTT), known inhibitors for 38 kinases, and 10 HDACs isoforms, that we identified by target fishing and literature review. The data was subjected to rigorous biological and chemical curation leaving the final datasets ranging from 76 to 8173 compounds depending on the target.

View Article and Find Full Text PDF

Background: Gilteritinib is a commonly used targeted drug for acute myeloid leukemia (AML), but the emergence of gilteritinib resistance greatly reduces the therapeutic effect. RING finger protein 38 (RNF38), a protein with RING Finger domain and E3 ubiquitin ligase activity, has been implicated in tumorigenesis and drug resistance. However, the role and mechanism of RNF38 in the gilteritinib resistance of AML remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!