Electron Microscopy to Study the Fine Structure of the Pneumococcal Cell.

Methods Mol Biol

Central Facility for Microscopy, HZI-Helmholtz Centre for Infection Research, Braunschweig, Germany.

Published: August 2019

Electron microscopy allows for studying bacterial ultrastructure at high resolutions. Two types of electron microscopes are used for this purpose. The transmission electron microscope allows for access to inner bacterial ultrastructure when imaging ultrathin sections as well as cell wall-attached structures by negative staining, whereas scanning electron microscopy allows for the detection of structures on the bacterial cell surface alone or to study the interplay between pneumococci and their host cells. This chapter deals with recommendations for well-adapted methodologies to examine pneumococcal ultrastructure in detail. Especially, we focus on the preservation of the pneumococcal capsular polysaccharide, which represents an important virulence factor of pneumococci. Since capsules are highly hydrated structures, the introduction of a new fixation protocol involving lysine acetate, ruthenium red, and osmium (LRR fixation) results in a very well-preserved capsular structure in such a way that the amount of capsular material bound on the bacterial surface can be compared within different serotypes. In our method, capsular ultrastructure is preserved without the need for serotype-specific antibodies, which have been used in other studies to preserve the pneumococcal capsule. In addition, the new LRR fixation allows for studying the presence or absence of capsular material during adhesion and invasion of pneumococci on epithelial or endothelial host cells in cell culture experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-9199-0_2DOI Listing

Publication Analysis

Top Keywords

electron microscopy
12
microscopy allows
8
allows studying
8
bacterial ultrastructure
8
host cells
8
lrr fixation
8
capsular material
8
electron
5
capsular
5
microscopy study
4

Similar Publications

Photothermal Coating on Zinc Alloy for Controlled Biodegradation and Improved Osseointegration.

Adv Sci (Weinh)

January 2025

Department of Prosthodontics, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.

Zinc (Zn) and its alloys are promising biomaterials for orthopedic applications due to their degradability and mechanical properties. Zn plays a crucial role in bone formation, but excessive early release may cause cytotoxicity and inhibit osseointegration. To solve this, we developed a near-infrared (NIR) light-controlled polycaprolactone/copper-sulfur (PCL/CuS) coating that slows degradation and enhances osseointegration of Zn alloys.

View Article and Find Full Text PDF

This study details the synthesis of a novel ternary nanocomposite composed of MnFeO, FeVO, and modified zeolite, achieved through a two-step process. The initial step involved the hydrothermal synthesis of the MnFeO/FeVO composite, followed by its application onto modified zeolite using ultrasonic waves. The synthesized nanocomposite was thoroughly characterized using a range of analytical techniques.

View Article and Find Full Text PDF

Differential expression of osteoblast-like cells on self-organized titanium dioxide nanotubes.

J Dent Sci

December 2024

Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.

Background/purpose: Titanium dioxide nanotube (TNT) structures have been shown to enhance the early osseointegration of dental implants. Nevertheless, the optimal nanotube diameter for promoting osteogenesis remains unclear due to variations in cell types and manufacture of nanotubes. This study aimed to evaluate the differences in MC3T3-E1 and Saos-2 cells behavior on nanotubes of varying diameters.

View Article and Find Full Text PDF

This study investigated the ameliorative effects of Yinchen lipid-lowering tea (YCLLT) on Non-alcoholic fatty liver disease (NAFLD), the specific mechanism involved was also studied. We modeled hepatocellular steatosis with HepG2 cells and intervened with different concentrations of YCLLT-containing serum. Lipid deposition was assessed by oil red O staining and AdipoR1 expression was analyzed by Western blot.

View Article and Find Full Text PDF

Mild steel provides strength to various building and industrial materials but it is badly affected by corrosion. In the present study, we investigate the efficacy of , a plant-based green corrosion inhibitor to minimize mild steel corrosion in a 1 M HSO solution. Weight loss, surface coverage, inhibition efficiency, and corrosion rate measurements were evaluated for various inhibitor concentrations and time intervals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!